Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: We have analyzed our collection of Vibrio cholerae O139 strains to determine whether filamentous phages are produced in their culture supernatants, and whether any replicative form of DNA is detectable in cell lysates. Two types of filamentous phage, designated fs1 (6.4 kb) and fs2 (8.5 kb), were found in strains of Vibrio cholerae O139, fs1 was commonly produced from clinical isolates of Vibrio cholerae O1. Infectious particles (filamentous phages) were inducible by subculture, mitomycin C, and cultivation in a ligated ileal loop of a rabbit. Type 4 fimbriae of Vibrio cholerae O1 sensitive to d-glucose and d-mannose were suggested to be receptors for fs1 and fs2. The genome of fs1 was revealed to encode a potential new enterotoxin homologous to zonula occludens toxin. Clarification of the relation of type 4 fimbriae and these filamentous phages will provide a new understanding of the colonization of Vibrio cholerae O1 and O139. Thus the presence of a new enterotoxin encoded by the genome of filamentous phage like fs1 may clarify the pathogenesis of cholera toxin negative clinical isolates of Vibrio cholerae O1 and non-O1. Our findings combined with the earlier report by Ehara et al. [Microbio. Immunol. 37 (1993) 679–688] suggest that type 4 fimbriae of Vibrio cholerae O1 are important for the development of an effective vaccine against cholera.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The non-membrane-damaging cytotoxin which causes dramatic cell rounding of cultured HeLa cells was purified to homogeneity from a clinical strain (WO5) of non-toxigenic Vibrio cholerae O1 Inaba belonging to the El Tor biotype. The purified protein has a denatured molecular weight of 35 kDa and a native molecular weight of approximately 37 kDa indicating the monomeric nature of the protein. The 15 N-terminal amino acid sequence of non-membrane-damaging cytotoxin showed complete homology to the hemagglutinin protease previously purified and characterized from V. cholerae O1. Purified non-membrane-damaging cytotoxin from V. cholerae O1 was immunologically and biochemically identical to that previously purified from V. cholerae O26. Non-membrane-damaging cytotoxin was found to be enterotoxic in rabbit ileal loop assay inducing accumulation of non-hemorrhagic fluid at 100 μg and elicited a concentration dependent increase in short circuit current and tissue conductance of rabbit ileal mucosa mounted on Ussing chambers. A significant serum immunoglobulin G response against non-membrane-damaging cytotoxin was elicited by patients infected with V. cholerae O139 but not with V. cholerae O1. These properties make non-membrane-damaging cytotoxin a potential virulence factor of V. cholerae which should be taken into consideration while making live, attenuated recombinant vaccine strains against cholera.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...