Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Cytoplasmic inclusion bodies that are accumulations of neurofilaments are the pathological hallmark of many neurodegenerative diseases and have been produced in transgenic mice by overexpression of mouse (NF-L and NF-M; light and medium chains, respectively) and human (NF-M and NF-H; medium and heavy chains, respectively) neurofilament subunits. This report describes a neuronal culture model in which human NF-L was overexpressed to produce cytoplasmic accumulations of neurofilaments within cell bodies concomitant with the collapse of the endogenous neurofilament network. Electron microscopy showed that, within accumulations, neurofilaments retained a filamentous structure. The culture model thus provides a novel system in which the effect on neurofilament accumulations of manipulating protein phosphorylation can be studied. Treatment of cells containing neurofilament accumulations with bisindolylmaleimide, a specific protein kinase C inhibitor, resulted in regeneration of the filamentous network; this effect was not due to a change in the level of transfected NF-L expression. These findings lend support to the suggestion that an impairment in the regulation of protein phosphorylation may lead to the accumulation of neurofilaments seen in neurodegenerative disease.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary To determine the rate and routes of removal of lysosomal, lipofuscin-like dense bodies from neurons, the protease inhibitor, leupeptin, was infused into the lateral ventricle of rats for up to nine days. After seven days a number of animals were then allowed to recover. The formation and later disappearance of dense bodies was followed by morphology and immunocytochemistry. After 48 h of infusion lysosomal dense bodies in large numbers appeared in cortical, hippocampal and cerebellar neurons, which also showed increased ubiquitin immunoreactivity, as well as in other cell types. By 3–4 days ubiquitin-immunoreactive dense bodies were equally distributed between neurons and astroglia. After seven to nine days of infusion ubiquitin immunoreactive dense bodies filled neuronal perikarya, dendrites and expanded initial segments of many axons and were abundant in glial processes. All dense bodies studied by electron microscopy were ubiquitin immunoreactive. After four days of recovery dense bodies were markedly fewer in neuronal perikarya, and virtually all were now within glial processes. From 7 to 28 days of recovery, when most neurons appeared normal, lipofuscin bodies remained in axon initial segments and in reduced numbers in glial processes, particularly around blood vessels and beneath the pia of hippocampus and of cerebellar cortex. Thus, neurons probably have a steady passage of short lived proteins through the lysosomal excretory pathway. The observed temporal sequence of events on recovery suggests that secondary lysosomes probably pass rapidly from neuronal perikarya and dendrites to astrocytes and thus to the vascular bed or pia-arachnoid. The mechanism of cell-to-cell transfer is not clear from this study.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...