Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Amacrine neurons expressing nitric oxide synthase (NOS) contain brain-derived neurotrophic factor (BDNF) receptors and respond to exogenous BDNF [Klöcker, N., Cellerino, A. & Bähr, M. (1998) J. Neurosci., 18, 1038–1046]. We analysed the effects of BDNF on the development of neurons which express NOS in the mouse and rat retina. Rat pups received a total of three intraocular injections of BDNF at intervals of 48 h, starting at postnatal day 16 (P16), and were killed at P22. The retinas were stained for NADPH-diaphorase, a histological marker of NOS. NOS-expressing neurons were found in both the inner nuclear layer (INL) and the ganglion cell layer (GCL). Two classes of NOS-expressing neurons, type I and type II, had already been distinguished in the INL [Koistinaho, J. & Sagar, S.M. (1995) In Osborne, N.N. & Chader, G.J. (eds), Progress in Retinal and Eye Research, Vol. 15. Oxford University Press, pp. 69–87] and a third one in the GCL. Up-regulation of NADPH-diaphorase activity was observed after BDNF treatment. The number of type I neurons remained stable, whereas the number of type II neurons and NOS-positive neurons in the GCL increased significantly (P 〈 0.001). Type I and type II neurons were significantly larger in BDNF-treated retinas. Double-labelling experiments revealed that BDNF induces NADPH-diaphorase in dopaminergic neurons and amacrine cells displaced to the GCL, but not in retinal ganglion cells. In mice homozygous for a null mutation of the bdnf gene, the intensity of NADPH-diaphorase labelling in both somata and processes was reduced, but the number of labelled neurons was not dramatically reduced. These findings indicate that BDNF regulates the neurotransmitter phenotype of NOS-expressing amacrine neurons under physiological conditions, but is not required for their survival.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The aim of the present study was to determine the influence of brain-derived neurotrophic factor (BDNF) on survival, phenotype differentiation and network formation of retinal neurons and glia cells. To achieve a defined concentration and constant level of BDNF over several days, experiments were performed in an organotypic culture of the developing rat retina. After 6 days in vitro, apoptosis in the different cell layers was determined by TUNEL staining and cell-type-specific antibodies were used to identify distinct neuronal cell types and Müller cells. Cultured retinas treated with BDNF (100 ng BDNF/mL medium) were compared with untreated as well as with age-matched in vivo retinas. Quantitative morphometry was carried out using confocal microscopy. BDNF promoted the in vitro development and differentiation of the retina in general, i.e. the number of cells in the nuclear layers and the thickness of the plexiform layers were increased. For all neurons, the number of cells and the complexity of arborizations in the synaptic layers were clearly up-regulated by BDNF. In control cultures, the synaptic stratification of cone bipolar cells within the On- and Off-layer of the inner plexiform layer was disturbed and a strong reactivity of Müller cell glia was observed. These effects were not present in BDNF-treated cultures. Our data show that BDNF promotes the survival of retinal interneurons and plays an important role in establishing the phenotypes and the synaptic connections of a large number of neuronal types in the developing retina. Moreover, we show an effect of BDNF on Müller glia cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...