Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The recent introduction of fluorescent two-dimensional difference gel electrophoresis, combined with mass spectrometry, has greatly simplified the analysis and identification of differentially expressed proteins by eliminating intergel variability. In this report, we describe the successful application of this functional proteomics approach to compare protein expression levels in visual cortical area 17 of adult cats and 30-day-old kittens, in order to identify proteins expressed in an age-related fashion. We identified 16 proteins that were more abundantly expressed in kitten striate cortex and 12 proteins with a pronounced expression in adult cat area 17. Among those isolated from kitten area 17 were proteins related to axon growth and growth cone guidance and to the formation of cytoskeletal filaments. Glial fibrillary acidic protein, as identified in adult cat area 17, has been implicated previously in the termination of the critical period for cortical plasticity in kittens. In situ hybridization experiments for two of the identified proteins, glial fibrillary acidic protein and collapsin response mediator protein 5, confirmed and extended their differential expression to the mRNA level. Our findings show that two-dimensional difference gel electrophoresis combined with mass spectrometry is a powerful approach that permits the identification of small protein expression differences correlated to different physiological conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Adenosine and caffeine modulate locomotor activity and striatal gene expression, partially through the activation and blockade of striatal A2A receptors, respectively. The elucidation of the roles of these receptors benefits from the construction of A2A receptor-deficient mice (A2A-R−/−). These mice presented alterations in locomotor behaviour and striatal expression of genes studied so far, which are unexpected regarding the specific expression of A2A receptor by striatopallidal neurones. To clarify the functions of A2A receptors in the striatum and to identify the mechanisms leading to these unexpected modifications, we studied the basal expression of immediate early and constitutive genes as well as dopamine and glutamate neurotransmission in the striatum. Basal zif268 and arc mRNAs expression was reduced in mutant mice by 60–80%, not only in the striatum but also widespread in the cerebral cortex and hippocampus. Striatal expression of substance P and enkephalin mRNAs was reduced by about 50% and 30%, respectively, whereas the expression of GAD67 and GAD65 mRNAs was slightly increased and unaltered, respectively. In vivo microdialysis in the striatum revealed a 45% decrease in the extracellular dopamine concentration and three-fold increase in extracellular glutamate concentration. This was associated with an up-regulation of D1 and D2 dopamine receptors expression but not with changes in ionotropic glutamate receptors. The levels of tyrosine hydroxylase and of striatal and cortical glial glutamate transporters as well as adenosine A1 receptors expression were indistinguishable between A2A-R−/− and wild-type mice. Altogether these results pointed out that the lack of A2A receptors leads to a functional hypodopaminergic state and demonstrated that A2A receptors are necessary to maintain a basal level in immediate early and constitutive genes expression in the striatum and cerebral cortex, possibly via their control of dopamine pathways.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Glutamate is known to play a crucial role in the topographic reorganization of visual cortex after the induction of binocular central retinal lesions. In this study we investigated the possible involvement of the glial high-affinity Na+/K+-dependent glutamate transporters in cortical plasticity using western blotting and intracortical microdialysis. Basal extracellular glutamate levels and the re-uptake activity for glutamate have been determined by comparing the extracellular glutamate concentration before and during the blockage of glutamate removal from the synaptic cleft with the potent transporter inhibitor l-trans-pyrrolidine-3,4-dicarboxylic acid. In cats with central retinal lesions we observed increased basal extracellular glutamate concentrations together with a decreased re-uptake activity in non-deprived, peripheral area 17, compared with the sensory-deprived, central cortex of the same animal as well as the topographically matching regions of area 17 in normal subjects. Western blotting experiments revealed a parallel decrease in the expression level of the glial glutamate transporter proteins GLT-1 and GLAST in non-deprived cortex compared with sensory-deprived cortex of lesion cats and the corresponding regions of area 17 of normal subjects. This study shows that partial sensory deprivation of the visual cortex affects the removal of glutamate from the synaptic cleft and implicates a role for glial–neuronal interactions in adult brain plasticity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: We used in situ hybridization to investigate the effect of complete visual deafferentation on immediate early gene expression in adult cat visual cortex. Deafferentation was obtained by unilateral section of the optic tract and sections of both the corpus callosum and anterior commissure. In this model, one hemisphere served as control for the other within the same animal. A decrease in zinc finger protein (zif)-268 and c-fos mRNA was observed in the superficial and deep layers of areas 17 and 18, and all layers of area 19 in the deafferented hemisphere. This decrease, present 3 days after surgery, was maximal after 30 days. An increase of c-jun mRNA was observed in the deep layers of areas 17, 18 and 19 in the deafferented hemisphere 3, 10 and 30 days after surgery. These results suggest that visual input activates zif-268 and c-fos expression and tonically depresses c-jun expression in the primary visual complex yielding similar levels of c-jun and c-fos expression in normal conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Removal of retinal input from a restricted region of adult cat visual cortex leads to a substantial reorganization of the retinotopy within the sensory-deprived cortical zone. Little is known about the molecular mechanisms underlying this reorganization. We used differential mRNA display (DDRT-PCR) to compare gene expression patterns between normal control and reorganizing visual cortex (area 17–18), 3 days after induction of central retinal lesions. Systematic screening revealed a decrease in the mRNA encoding cyclophilin A in lesion-affected cortex. In situ hybridization and competitive PCR confirmed the decreased cyclophilin A mRNA levels in reorganizing cortex and extended this finding to longer postlesion survival times as well. Western blotting and immunocytochemistry extended these data to the protein level. In situ hybridization and immunocytochemistry further demonstrated that cyclophilin A mRNA and protein are present in neurons. To exclude the possibility that differences in neuronal activity per se can induce alterations in cyclophilin A mRNA and protein expression, we analyzed cyclophilin A expression in the dorsal lateral geniculate nucleus (dLGN) of retinally lesioned cats and in area 17 and the dLGN of isolated hemisphere cats. In these control experiments cyclophilin A mRNA and protein were distributed as in normal control subjects indicating that the decreased cyclophilin A levels, as observed in sensory-deprived area 17 of retinal lesion cats, are not merely a reflection of changes in neuronal activity. Instead our findings identify cyclophilin A, classically considered a housekeeping gene, as a gene with a brain plasticity-related expression in the central nervous system.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Recent immunocytochemical stainings on cat visual cortex, visually stimulated for 1 h, showed a strong induction of Fos expression in cortical neurons. We initiated immunocytochemical double staining experiments with different cytochemical markers to investigate the neurochemical and morphological character of these activated neurons showing Fos induction after sensory stimulation. Double staining with Fos and glutamic acid decarboxylase (GAD) demonstrated the presence of Fos in the nuclei of GABAergic neurons of the primary visual cortex. To further subdivide this Fos/GABAergic cell population we investigated whether Fos colocalized with parvalbumin, calbindin or calretinin. Colocalization of Fos with these calcium-binding proteins delineated distinct neuronal subclasses of Fos-immunoreactive neurons in supra- and infragranular layers of cat area 17. Quantitative analysis of the proportion of immunoreactive local circuit neurons revealed that 35% of the GABAergic neurons showed Fos induction in supragranular layers, whereas in infragranular layers a mere 10% of the GABAergic cells revealed Fos expression. Fos coexisted in about 24% of the calbindin-immunopositive cells within supra- and infragranular layers, but only a minority of the parvalbumin and the calretinin neuronal subgroups were immunopositive for Fos in the corresponding layers of area 17. These findings suggest that visual stimulation induces Fos expression in distinct subsets of inhibitory neurons in cat primary visual cortex.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Different intracortical mechanisms have been reported to contribute to the substantial topographic reorganization of the mammalian primary visual cortex in response to matching lesions in the two retinas: an immediate expansion of receptive fields followed by a gradual shift of excitability into the deprived area and finally axonal sprouting of laterally projecting neurons months after the lesion. To gain insight into the molecular mechanisms of this adult plasticity, we used immunocytochemical and bioanalytical methods to measure the glutamate and GABA neurotransmitter levels in the visual cortex of adult cats with binocular central retinal lesions. Two to four weeks after the lesions, glutamate immunoreactivity was decreased in sensory-deprived cortex as confirmed by HPLC analysis of the glutamate concentration. Within three months normal glutamate immunoreactivity was restored. In addition, the edge of the unresponsive cortex was characterized by markedly increased glutamate immunoreactivity 2–12 weeks postlesion. This glutamate immunoreactivity peak moved into the deprived area over time. These glutamate changes corresponded to decreased spontaneous and visually driven activity in unresponsive cortex and to strikingly increased neuronal activity at the border of this cortical zone. Furthermore, the previously reported decrease in glutamic acid decarboxylase immunoreactivity was found to reflect decreased GABA levels in sensory-deprived cortex. Increased glutamate concentrations and neuronal activity, and decreased GABA concentrations, may be related to changes in synaptic efficiency and could represent a mechanism underlying the retinotopic reorganization that occurs well after the immediate receptive field expansion but long before the late axonal sprouting.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 19 (2004), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The functional properties and anatomical organization of the mammalian visual cortex are immature at birth and develop gradually during the first postnatal weeks. There is a ‘critical period’ where the cortex is plastic and susceptible to changes in visual input. Knowledge of proteins with a high expression during this period has great importance for the understanding of activity-driven maturation of the brain. The collapsin response mediator protein family consists of five cytosolic phosphoproteins (CRMP1–5) that are involved in neuronal differentiation during the development of the nervous system. They have been implicated in axon guidance and growth cone collapse through their action in the signalling pathway of collapsin/semaphorin. We examined the distribution of the CRMPs throughout the visual cortex of kitten and adult cat by in situ hybridization. While CRMP3 could not be detected in cat forebrain, the other CRMPs showed a higher expression in the immature brain compared to the adult state. Western blotting allowed the quantification of the observed age-dependent differences in the expression of CRMP2, 4 and 5. Moreover, for CRMP2 and 5 we observed a number of development-dependent post-translational modifications. We thus conclude that CRMPs might be important during the normal postnatal development of the visual cortex possibly for the fine-tuning of the specific connections in the brain.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Removal of retinal input from a restricted region of adult mammalian visual cortex leads to a substantial reorganization of the retinotopy within the lesion projection zone (LPZ) of primary visual cortex (area 17). Little is known about the molecular mechanisms underlying such cortical plasticity. We investigated whether small but homonymous central retinal lesions induced differences in gene expression patterns between central area 17, the LPZ, vs. peripheral area 17 of the adult cat. Systematic differential mRNA display screening revealed higher levels for the mRNA encoding the transcription factor MEF2A in the LPZ. Semi-quantitative PCR confirmed this dependency of mef2A mRNA expression on visual eccentricity in area 17 of animals with retinal lesions in contrast to normal animals. Western blotting experiments extended these data to the protein level and to two other members of the MEF2 transcription factor family, i.e. MEF2C and MEF2D. Quantitative analysis of the Western blotting experiments further revealed a post-lesion survival time-dependent change in expression for all three MEF2 family members. The lesion effect was maximal at 3 days and 1 month post-lesion, but only minor at 2 weeks post-lesion. Interestingly, complete removal of retinal input from area 17 by surgery did not significantly alter the expression of the MEF2 transcription factors, excluding a definite correlation between neuronal activity and MEF2A expression levels. MEF2A immunocytochemistry confirmed both qualitatively and quantitatively the Western blotting observations in all animal models. Together, our findings identified a brain plasticity-related expression pattern for the MEF2 transcription factor family in adult mammalian neocortex.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...