Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 121 (1999), S. 458-466 
    ISSN: 1432-1939
    Keywords: Key words Forest productivity ; Koa ; Hawaii mountain forests ; Water supply ; Carbon isotope discrimination
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  We studied changes in stand structure, productivity, canopy development, growth efficiency, and intrinsic water use efficiency (WUE=photosynthesis/stomatal conductance) of the native tree koa (Acacia koa) across a gradient of decreasing rainfall (2600–700 mm) with increasing elevation (700–2000 m) on the island of Hawaii. The stands were located on organic soils on either smooth (pahoehoe) or rough (aa) lava flows. In the greenhouse, we also examined growth and WUE responses to different water regimes of koa seedlings grown from seeds collected in the study area. We tested the hypotheses that (1) stand basal area, aboveground net primary productivity (ANPP), leaf area index (LAI), and growth per unit leaf area decreased with decreasing rainfall, (2) WUE increased with decreasing rainfall or water supply, and (3) WUE responses were caused by stomatal limitation rather than by nutrient limitations to photosynthesis. The carbon isotope composition of phyllode tissues (δ13C) was examined as an integrated measure of WUE. Basal area and LAI of koa stands on both pahoehoe and aa lava flows, and ANPP on aa lava flows decreased with elevation. Basal area, LAI, and ANPP of koa in mixed stands with the exotic tropical ash (Fraxinus udhei) were lower compared to single-species koa stands at similar elevations. Along the gradient, phyllode δ13C (and therefore WUE) increased with elevation from –30.2 to –26.8‰. Koa in mixed stands exhibited higher (less negative) δ13C than in single-species stands suggesting that koa and tropical ash competed for water. In the greenhouse, we observed the same trend observed in the field, as phyllode δ13C increased from –27.7 to –24‰ as water supply decreased. Instantaneous gas exchange measurements in the greenhouse showed an inverse correlation of both maximum (morning) photosynthesis (A) and conductance (g) with δ13C values and, also, a good agreement between instantaneous (A/g) and integrated measures of WUE. Phyllode δ13C was not correlated with foliar concentrations of N or other nutrients in either the field or the greenhouse, indicating that differences in δ13C were caused by stomatal limitation rather than by nutrient-related changes in photosynthetic capacity. This study provided evidence that long-term structural and growth adjustments as well as changes in WUE are important mechanisms of koa response to water limitation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Keywords: Key words Invasive species ; Photosynthesis ; Biomass allocation ; Hawaii ; Tropical rain forests
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Growth, biomass allocation, and photosynthetic characteristics of seedlings of five invasive non-indigenous and four native species grown under different light regimes were studied to help explain the success of invasive species in Hawaiian rainforests. Plants were grown under three greenhouse light levels representative of those found in the center and edge of gaps and in the understory of Hawaiian rainforests, and under an additional treatment with unaltered shade. Relative growth rates (RGRs) of invasive species grown in sun and partial shade were significantly higher than those for native species, averaging 0.25 and 0.17 g g−1 week−1, respectively, while native species averaged only 0.09 and 0.06 g g−1 week−1, respectively. The RGR of invasive species under the shade treatment was 40% higher than that of native species. Leaf area ratios (LARs) of sun and partial-shade-grown invasive and native species were similar but the LAR of invasive species in the shade was, on average, 20% higher than that of native species. There were no differences between invasive and native species in biomass allocation to shoots and roots, or in leaf mass per area across light environments. Light-saturated photosynthetic rates (Pmax) were higher for invasive species than for native species in all light treatments. Pmax of invasive species grown in the sun treatment, for example, ranged from 5.5 to 11.9 μmol m−2 s−1 as compared with 3.0−4.5 μmol m−2 s−1 for native species grown under similar light conditions. The slope of the linear relationship between Pmax and dark respiration was steeper for invasive than for native species, indicating that invasive species assimilate more CO2 at a lower respiratory cost than native species. These results suggest that the invasive species may have higher growth rates than the native species as a consequence of higher photosynthetic capacities under sun and partial shade, lower dark respiration under all light treatments, and higher LARs when growing under shade conditions. Overall, invasive species appear to be better suited than native species to capturing and utilizing light resources, particularly in high-light environments such as those characterized by relatively high levels of disturbance.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 56 (2000), S. 195-207 
    ISSN: 1573-0867
    Keywords: fertilization ; nutrient cycling ; nutrient diagnosis ; peach palm ; tree crops
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Peach palm (Bactris gasipaes Kunth) is a relatively new food crop with great potential for the humid tropics. Native to tropical America, it is commercially grown to produce hearts-of-palm and, to a lesser extent, an edible fruit. Peach palm is well adapted to nutrient poor, acid soils, and is cultivated in Brazil and Costa Rica on highly weathered soils with low pH, high aluminum saturation and, often, low organic matter content. Fertilization trials on peach palm have shown significant responses to applied nitrogen while the response to other nutrients such as phosphorus has been less frequent. Additional research, however, is necessary to determine soil and foliar nutrient critical levels and to address questions concerning peach palm growth responses to nutrient additions varying in time and space. Recycled nutrients likely contribute significantly to peach palm nutrition because plant residues are produced in considerable amounts and can decompose rapidly in commercial peach palm plantation in humid environments where cut leaves and stems are left in the field following harvest. On the other hand, nutrient exports from the system are relatively small (e.g., 4.8–6.4 kg P ha-1yr-1, 28–32.3 kg N ha-1 yr-1, 31–45.2 kg K ha-1 yr-1). As for most perennial tree crops, diagnosis of nutrient deficiencies in peach palm is less clear than in annual crops because of factors such as nutrient cycling, internal retranslocation, stand age, foliage age and position within the crown, and seasonal and climatic variations. Some studies on peach palm have examined variation in nutrient content within leaves and plants, and among plants as well, but the sensitivity of different plant tissues to reflect changes in nutrient uptake and response to nutrient additions should be investigated in controlled field experiments.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...