Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial and engineering chemistry 24 (1985), S. 888-889 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 38 (1992), S. 1864-1870 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The gas holdup in different arrays of expanded metal sheets was determined by the conductimetric method.A model had to be developed for analyzing the conductimetric behavior of the cell in the presence of the metallic sheets. The validity of this model has been verified with single phase flow. The application to two-phase flow allowed the obtaining of information on gas accumulation within stacked expanded metal sheets, showing a strong influence of the geometry of the array. Depending on the orientation of the stacked sheets and of the large dimension of the expanded metal, the gas holdup within the packing will be equal or larger than in an empty bubble column.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 25 (1979), S. 368-370 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Chemical Engineering & Technology - CET 14 (1991), S. 287-293 
    ISSN: 0930-7516
    Keywords: Chemistry ; Industrial Chemistry and Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A study of mass transfer to regular packings by the electrochemical technique is presented in this paper. The excellent properties of radial mixing were verified and the correlation for mass transfer rate was also obtained. It was found that the energy efficiency, which is represented by the LeGoff number, is higher than that of other packings due to the low pressure drop shown by these arrangements.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Chemical Engineering & Technology - CET 15 (1992), S. 327-330 
    ISSN: 0930-7516
    Keywords: Chemistry ; Industrial Chemistry and Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Two ways of enhancing liquid to solid mass transfer in regular packings are proposed and investigated: the introduction of a fluidized bed of inert particles and of turbulence promoters by constructing the packing from expanded metal. It is shown that both systems can be of considerable benefit in improving the mass transfer performance: up to 200% in the first case and up to 130% in the second case. However, the energy dissipated by fluidized particles is excessive in comparison to that consumed by turbulence promoters.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Chemical Engineering & Technology - CET 20 (1997), S. 297-303 
    ISSN: 0930-7516
    Keywords: Chemistry ; Industrial Chemistry and Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Electrochemical gas absorption or biotechnical purification processes using structured packing as electrode or as biological support, respectively, may operate in bubble columns in presence of suspended solids. In both systems the knowledge of mass transfer rates from the liquid to the packing is important for the design of equipment. In the present investigation, the fluid dynamic behavior of a simple bubble column and a bubble column containing small size particles, both in presence of structured packing, was studied. Furthermore, mass transfer coefficients between the liquid and the structured packing were obtained by the electrochemical method. The influence of physical properties of the liquid phase, gas flow rate, kind and concentration of the suspended particles on both gas holdup and mass transfer was investigated. Correlations of the experimental data of mass transfer using dimensionless groups were derived and compared to previous correlations. Similarity with a heat transfer expression already used in two-phase systems was found.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...