Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0428
    Keywords: Type 2 diabetes ; very low molecular weight serum growth peptide ; human arterial smooth muscle cells ; fibroblasts ; cell culture ; diabetic angiopathy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Diabetic angiopathy may be due, in part, to increased growth in vascular cells. We have investigated serum growth factors in Type 2 (non-insulin-dependent) diabetic and healthy subjects and their effect on cultured human arterial smooth muscle cells and fibroblasts. Removal of the dialyzable serum fraction (mol. wt. 〈12,000) reduced the growth effect of the diabetic sera by 37% (2p〈0.005) and of the nondiabetic sera by only 8% (2p〈0.01). In contrast, there was no difference in growth stimulation between the dialyzed diabetic or non-diabetic sera. Complete recovery of the dialyzable serum growth fraction was also obtained at a mol. wt. below 3,500. Ten times the concentration of the low molecular weight growth factor (mol. wt. 〈3,500) from diabetic sera stimulated growth of fibroblasts or arterial smooth muscle cells by a mean of 243% or 174% and from non-diabetic sera by a mean of 146% or 137%, respectively (2p〈0.01). The growth stimulating potency of this serum fraction (mol. wt. 〈3,500) contained in 10% diabetic sera, was two to ten times higher than that of human growth hormone or insulin, added in amounts equivalent to 10% or physiological serum concentrations. This diabetic serum growth factor was further characterized by: (1) linear dependence of growth stimulation over a concentration range of twenty times and by (2) reduction of the growth stimulating activity to control levels by pretreatment: (a) at 95 °C for 30 min, or (b) with two different proteases: Serva pronase E (Streptomyceus griseus) or Calbiochem protease (Subtilisin calsberg). Increased amounts of the very low molecular weight serum growth peptide in Type 2 diabetes might easily penetrate the arterial wall, thus contributing to the genesis of angiopathy.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...