Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 102 (1994), S. 69-74 
    ISSN: 1432-1106
    Keywords: Motoneurone ; Recruitment ; Force modulation ; Rat ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In the context of an analysis concerning factors of importance for the relative contributions of recruitment and rate gradation of muscle force, the distribution of electrical excitability was analyzed for medial gastrocnemius (MG) motoneurones of rat and cat. The experimental data came from previously collected intracellular measurements in animals anaesthetized with pentobarbitone. Electrical excitability was measured as the threshold (nanoamperes) for single spike generation (rheobase) in rat and for maintained repetitive firing (rhythmic threshold) in cat. Furthermore, the data included measurements of axonal conduction velocity and of contractile properties of the muscle units innervated by the studied motoneurones. The units were categorized into types S (slow-twitch, fatigue-resistant), FR (fast-twitch, fatigue-resistant) and FF (fast-twitch, fatiguable) on the basis of the combined criteria of twitch-speed and sensitivity to fatigue. We confirmed that, in spite of the presence of normal-looking symmetrical distributions of axonal conduction velocity, there was a positive skew in the distribution of electrical excitability (relatively high numbers of cells with low thresholds, few with high ones). Within each unit category (S, FR, FF), we ranked the motoneurones according to their relative electrical excitability and calculated the threshold difference between consecutive cells (“threshold spacing”). In accordance with the skewed distribution of electrical excitability, we found that the mean threshold spacing was ranked in the same way as the mean thresholds, i.e. S〈FR〈FF; the statistical analysis showed that, for cats as well as rats, small threshold-spacing steps were significantly more common for S than for FF motoneurones. In the discussion it is pointed out that the narrow threshold-spacing for S units, as compared to FF units, would tend to decrease the relative amount of recruitment-parallel rate modulation in these cells. Thus, the spacing of recruitment thresholds tends to allow the easily recruited S motoneurones to remain firing at relatively low rates during ongoing recruitment gradation, which would be of potential value in promoting a high degree of endurance for long-lasting postural contractions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2013
    Keywords: Rat ; Motor unit ; Isometric contraction ; Speed
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Recordings of isometric force were obtained for twitches and (sub)maximal tetani of gastrocnemius medialis (MG) and tibialis anterior (TA) muscle units in female Wistar rats. We assessed the relationships between unit properties that have all been associated with “speed”: (1) the relative degree of peak force attained during repetitive activation at 40 Hz (P 40/P max), (2) the relative degree of final twitch fusion during the same test burst (Fus-end), and (3) various measures of the time-course of single twitches, including twitch time-to-peak and a parameter referred to as “initial fusion ratio” (Fus-in; relative decline from peak force at 25 ms from twitch onset). The various measures of twitch time-course were significantly correlated to each other with correlation coefficients varying over a fairly wide range (0.35–0.64 for MG; 0.50–0.80 for TA). Twitch time-course was also significantly correlated with Fus-end during the 40-Hz repetitive activation; the highest correlation coefficient (0.69 for MG, 0.80 for TA) was obtained for Fus-in, which was also numerically similar to Fus-end. Thus, the degree of fusion indeed seemed to be largely dependent upon aspects of twitch time-course. However, the relative degree of force mobilization obtained in the same contractions elicited by stimulation at 40 Hz was not consistently better correlated with Fus-end than with measures of single twitch time-course. Furthermore, in fast-twitch units having the same twitch time-to-peak, the force mobilization elicited by stimulation at 40 Hz (P 40 P max) was the same for MG and TA, while the degree of fusion was significantly smaller for TA than for MG units. The results demonstrate the complexity of the concept of isometric “speed” and underline the need for using several speed indicators in parallel in studies concerning the differentiation of muscle (unit) properties.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...