Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-904X
    Keywords: monoamine oxidase inhibitors ; tranylcypromine ; N-(2-cyanoethyl)tranylcypromine ; catecholamines ; brain ; prodrug
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The disposition of the N-cyanoethyl analogue of tranylcypromine (TCP) and the TCP formed from it have been studied in the rat brain following intraperitoneal (ip) administration (0.1 mmol/kg) and the resultant data compared with those obtained following an equimolar dose of TCP. Brain concentrations of the neurotransmitter amines dopamine (DA) and noradrenaline (NA) have also been determined, as well as the percentage inhibition of monoamine oxidase (MAO) types A and B. Our results indicate that the N-cyanoethyl analogue may be a useful prodrug of TCP, providing lower but more sustained concentrations of TCP in brain. Brain levels of DA were increased in a similar pattern after CE-TCP or TCP. Brain levels of NA were decreased by TCP at most time intervals, while CE-TCP produced a much less pronounced effect. Both CE-TCP and TCP inhibited MAO-A and MAO-B, with maximum inhibition occurring 60 min after CE-TCP dosing and 30 min after dosing with TCP, times at which brain concentrations of CE-TCP and TCP were at the maximum.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 343 (1991), S. 478-482 
    ISSN: 1432-1912
    Keywords: N 2-Acetylphenelzine ; Alanine ; γ-Aminobutyric acid ; Monoamine oxidase ; Phenelzine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The neurochemical properties of N 2-acetyl-phenelzine were compared with those of phenelzine in a rat model. N 2-Acetylphenelzine is a relatively potent inhibitor of monoamine oxidase-A and -B and causes increases in whole-brain levels of noradrenaline and 5-hydroxytryptamine, and decreases in homovanillic acid, 5-hydroxyindole-3-acetic acid, and 3,4-dihydroxyphenylacetic acid after acute i.p. administration of the drug. Phenelzine is a more potent monoamine oxidase inhibitor than is N 2-acetylphenelzine. The most marked difference in the profile was that N 2-acetylphenelzine had no effect on whole brain levels of the amino acid neurotransmitters alanine and γ-aminobutyric acid, whereas phenelzine caused dramatic increases. Acetylation of phenelzine at the N2 position presumably interferes with the inhibition of the transaminase enzymes for γ-aminobutyric acid and alanine.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 354 (1996), S. 17-24 
    ISSN: 1432-1912
    Keywords: Fluoxetine ; Norfluoxetine ; Monoamine oxidase inhibition ; Kinetics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Fluoxetine and its primary metabolite, norfluoxetine, are inhibitors of neuronal uptake of 5-hydroxytryptamine. While fluoxetine has also been reported to inhibit monoamine oxidase (MAO) in vitro at concentrations much lower than those measured in brain following chronic fluoxetine treatment, neurochemical profiles are not consistent with substantial MAO inhibition in vivo. In an attempt to explain this inconsistency, we have examined the interactions of fluoxetine and norfluoxetine with rat brain MAO-A and -B by a radiochemical assay method. Fluoxetine and norfluoxetine were competitive inhibitors of MAO-A in vitro, with Ki values of 76.3 μM and 90.5 μM, respectively. Both compounds were non competitive or uncompetitive inhibitors of MAO-B in vitro. Inhibition of MAO-B was time-dependent and was very slowly reversible by dialysis. IC50 values versus metabolism of 50 μM, β-phenylethylamine were 17.8 μM (fluoxetine) and 18.5 μM (norfluoxetine). Analysis of the time-dependence of MAO-B inhibition by fluoxetine revealed that an initial competitive interaction between the enzyme and the inhibitor (Ki 245 μM) was followed by tight-binding enzyme inactivation (kinact 0.071 min−1). Following administration of fluoxetine (20 mg kg−1 day−1]) for 7 days, the cortical concentration of fluoxetine + norfluoxetine was estimated by gas-liquid chromatography to be 700 μM. Such drug treatment reduced MAO-A activity by 23% in 1:8 (w/v) cortical homogenates, but not in 1:80 homogenates. Inhibition of MAO-B in 1:8 homogenates was modest (12%) and was not significantly reduced by homogenate dilution. The concentration of 5-hydroxyindole-3-acetic acid, measured by high pressure liquid chromatography, was reduced by 47% in cortices from drug-treated rats, while concentrations of 5-hydroxytryptamine, noradrenaline, dopamine, 3,4-dihydroxyphenylacetic acid and homovanillic acid were unchanged. These results suggest that, following chronic drug administration leading to relatively high tissue concentrations of fluoxetine and norfluoxetine, inhibition of either form of MAO would be restricted by competition for the enzyme with intraneuronal amine substrates.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1912
    Keywords: Key words Phenelzine ; Imipramine ; GABA ; Glutamic acid decarboxylase ; GABA transporter ; GABA transaminase ; mRNA ; Gene expression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract There is an increasing body of evidence suggesting that GABA plays an important role in the therapeutic effects of antidepressant/antipanic drugs. Phenelzine and imipramine are efficacious in the treatment of depression and panic disorder and phenelzine has been reported to elevate GABA levels while imipramine enhances GABA release in rat brains. In the present study, using a multiprobe quantitative solution hybridization assay, we measured the steady-state levels of mRNAs that encode glutamic acid decarboxylase (GAD67 and GAD65), the GABA transporter GAT-1 and GABA transaminase (GABA-T) in rat cortex after treatment with constant infusion (via osmotic minipumps) of phenelzine or imipramine for a short-term (3 days) or long-term (21 days) period. We found that none of the treatments gave rise to significant changes in the steady-state levels of mRNAs encoding GAD67, GAD65 or GABA-T at any time point. The steady-state levels of GAT-1 mRNA were increased significantly (23%) after long-term, but not by short-term, treatment with phenelzine. Imipramine treatment, short- or long-term, did not alter the steady-state levels of GAT-1 mRNA. These results suggest that the GABA enhancing effects of phenelzine or imipramine in rat cortex do not affect the steady-state levels of mRNAs that encode GAD67, GAD65 and GABA-T. Further, the previously observed increases in GABA levels or GABA release induced by these drugs are probably not a consequence of changes in the expression of these genes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 358 (1998), S. 592-599 
    ISSN: 1432-1912
    Keywords: Key words Clozapine ; Cytochrome P450 ; Flavin-containing monooxygenase ; Human liver ; Drug metabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The atypical antipsychotic clozapine has been reported to be metabolised mainly to its N-oxide and N-demethylated products. In the present study, individual recombinant cytochrome P450 (CYP) and flavin-containing monooxygenase (FMO) enzymes were used to elucidate which enzymes are responsible for these metabolic con-versions. In vitro metabolism of clozapine was investigated using human CYP1A1, CYP1A2, CYP2C8, CYP2EI, CYP2C9-arg144, CYP2C9-cys144, CYP2C19, CYP2D6, CYP3A4, CYP3A5 and FMO3 supplemented with an NADPH generating system. Clozapine and its N-oxidation and N-demethylation metabolites were determined by an HPLC method with a Hypersil CN column and a UV detector. Of the enzymes investigated, CYP1A2, CYP3A4, CYP2D6, CYP2C8, CYP2C19 and, to a lesser extent, CYP2C9-cys, CYP2C9-arg and CYP3A5 were apparently involved in N-demethylation, while CYP1A2, CYP3A4, FMO3 and, to a lesser extent, CYP2C8, CYP2C19 and CYP3A5 were found to catalyse the formation of clozapine N-oxide. A bank of 16 human liver microsome preparations was investigated for ability to catalyze the production of clozapine N-oxide and N-desmethylclozapine. Attempts were made to correlate the rates of formation of these metabolites of clozapine to previously determined catalytic activities of CYP1A2, CYP2C19, CYP2D6, CYP2E1 and CYP3A4. At a clozapine concentration of 20 µM, the rate of formation of clozapine N-oxide showed significant correlations with activities of CYP3A4 (P〈0.01) and CYP1A2 (P〈0.05). The formation of N-desmethylclozapine exhibited significant correlations with CYP1A2 (P〈0.01) and CYP3A4 (P〈0.01). Similar correlations were observed when the clozapine concentration was increased to 300 µM except that the formation of clozapine N-oxide no longer correlated with CYP1A2 activity. It can be seen from these results that although some recombinant enzymes individually are capable of metabolising clozapine, the activities of several of these enzymes did not correlate with clozapine metabolism when mixtures of the enzymes are used. By combining the results of the current study and those reported in the literature, it is proposed that CYP3A4 and FMO3 are primarily responsible for the production of clozapine N-oxide, and CYP3A4 and CYP1A2 are primarily responsible for the formation of N-desmethylclozapine. The present study demonstrates the importance of the use of multiple techniques for the elucidation of the enzymes involved in the metabolism of certain drugs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 354 (1996), S. 17-24 
    ISSN: 1432-1912
    Keywords: Key words Fluoxetine ; Norfluoxetine ; Monoamine oxidase inhibition ; Kinetics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Fluoxetine and its primary metabolite, norfluoxetine, are inhibitors of neuronal uptake of 5-hydroxytryptamine. While fluoxetine has also been reported to inhibit monoamine oxidase (MAO) in vitro at concentrations much lower than those measured in brain following chronic fluoxetine treatment, neurochemical profiles are not consistent with substantial MAO inhibition in vivo. In an attempt to explain this inconsistency, we have examined the interactions of fluoxetine and norfluoxetine with rat brain MAO-A and -B by a radiochemical assay method. Fluoxetine and norfluoxetine were competitive inhibitors of MAO-A in vitro, with Ki values of 76.3 μM and 90.5 μM, respectively. Both compounds were non-competitive or uncompetitive inhibitors of MAO-B in vitro. Inhibition of MAO-B was time-dependent and was very slowly reversible by dialysis. IC50 values versus metabolism of 50 μM β-phenylethylamine were 17.8 μM (fluoxetine) and 18.5 μM (norfluoxetine). Analysis of the time-dependence of MAO-B inhibition by fluoxetine revealed that an initial competitive interaction between the enzyme and the inhibitor (Ki 245 μM) was followed by tight-binding enzyme inactivation (kinact 0.071 min-1). Following administration of fluoxetine (20 mg kg-1 day-1) for 7 days, the cortical concentration of fluoxetine+norfluoxetine was estimated by gas-liquid chromatography to be 700 μM. Such drug treatment reduced MAO-A activity by 23% in 1:8 (w/v) cortical homogenates, but not in 1:80 homogenates. Inhibition of MAO-B in 1:8 homogenates was modest (12%) and was not significantly reduced by homogenate dilution. The concentration of 5-hydroxyindole-3-acetic acid, measured by high pressure liquid chromatography, was reduced by 47% in cortices from drug-treated rats, while concentrations of 5-hydroxytryptamine, noradrenaline, dopamine, 3,4-dihydroxyphenylacetic acid and homovanillic acid were unchanged. These results suggest that, following chronic drug administration leading to relatively high tissue concentrations of fluoxetine and norfluoxetine, inhibition of either form of MAO would be restricted by competition for the enzyme with intraneuronal amine substrates.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 359 (1999), S. 147-151 
    ISSN: 1432-1912
    Keywords: Key words Risperidone ; 9-Hydroxyrisperidone ; CYP2D6 ; CYP3A4 ; Drug metabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Risperidone is a relatively new antipsychotic drug that has been reported to improve both the positive and the negative symptoms of schizophrenia and produces relatively few extrapyramidal side effects at low doses. Formation of 9-hydroxyrisperidone, an active metabolite, is the most important metabolic pathway of risperidone in human. In the present study, in vitro metabolism of risperidone (100 µM) was investigated using the recombinant human cytochrome P450 (CYP) enzymes CYP1A1, CYP1A2, CYP2C8, CYP2C9-arg144, CYP2C9-cys144, CYP2C19, CYP2D6, CYP3A4 and CYP3A5 supplemented with an NADPH-generating system. 9-Hydroxyrisperidone was determined by a new HPLC method with an Hypersil CN column and a UV detector. Of these enzymes, CYPs 2D6, 3A4 and 3A5 were found to be the ones capable of metabolising risperidone to 9-hydroxyrisperidone, with activities of 7.5, 0.4 and 0.2 pmol pmol–1 CYP min–1, respectively. A correlation study using a panel of human liver microsomes showed that the formation of 9-hydroxyrisperidone is highly correlated with CYP2D6 and 3A activities. Thus, both CYP2D6 and 3A4 are involved in the 9-hydroxylation of risperidone at the concentration of risperidone used in this study. This observation is confirmed by the findings that both quinidine (inhibitor of CYP2D6) and ketoconazole (inhibitor of CYP3A4) can inhibit the formation of 9-hydroxyrisperidone. Furthermore, inducers of CYP can significantly increase the formation of 9-hydroxyrisperidone in rat. The formation of 9-hydroxyrisperidone is highly correlated with testosterone 6β-hydroxylase activities, suggesting that inducible CYP3A contributes significantly to the metabolism of risperidone in rat.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Psychopharmacology 142 (1999), S. 280-288 
    ISSN: 1432-2072
    Keywords: Key words Phenelzine ; GABA ; Biogenic amines ; Norepinephrine ; Dopamine ; Serotonin ; Learning ; Memory ; Spatial water maze ; Inhibitory avoidance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Phenelzine (PLZ) is a non-selective monoamine oxidase (MAO) inhibitor commonly used to treat depression and panic disorder. In addition to increasing levels of biogenic amines in the brain, PLZ elevates brain levels of the amino acid gamma-aminobutyric acid (GABA; Baker et al. 1991; present study). Given the extensive evidence implicating biogenic amines and GABA in mnemonic processes, PLZ may affect learning and memory. To investigate this possibility, male Sprague-Dawley rats were given PLZ sulfate (15 or 30 mg/kg, based on free base weight) 2 h prior to training in a continuous multiple trial inhibitory avoidance (CMIA) and spatial water maze task. Retention was assessed 48 h later. The results indicated that PLZ enhanced CMIA and impaired water maze retention performance. Compared to control rats, rats given PLZ took significantly longer to re-enter the shock compartment and swam longer distances before reaching the escape platform on the retention tests. These effects of PLZ did not appear to be the result of PLZ-induced changes in acquisition or retrieval processes, activity levels, or footshock sensitivity. Combined, these findings indicate that PLZ influences memory in a task-dependent manner. These differential effects of PLZ may be the result of contrasting influences of GABA and biogenic amines on memory.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-2072
    Keywords: Key words Tyrosine ; Dopamine ; Noradrenaline ; Cerebrospinal fluid ; Cercopithecus aethiops ; Alcohol
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  An amino acid mixture devoid of tryptophan, given orally, was previously shown to reduce cerebrospinal fluid levels of tryptophan and 5-hydroxyindoleacetic acid in vervet monkeys, as compared to a control mixture containing all essential amino acids. In the present study, we tested the possibility that a similar amino acid mixture containing tryptophan, but devoid of phenylalanine and tyrosine (the amino acid precursors of catecholamine neurotransmitters), would influence dopamine and noradrenaline metabolism. Five hours after the administration of this mixture to vervet monkeys, cerebrospinal fluid levels of homovanillic acid and 3-methoxy-4-hydroxyphenylethylene glycol were reduced by 27.4% and 26.9%, respectively. Both effects were statistically significant. Plasma tyrosine (-30%) and the ratio of tyrosine to the sum of other large neutral amino acids (ΣLNAA) were also significantly reduced. The behavioral efficacy of phenylalanine/tyrosine depletion was compared with that of tryptophan depletion in a primate model of voluntary alcohol consumption. All three drinks lowered alcohol consumption, but the effects of the tryptophan-deficient amino acid mixture were not different from those of the balanced amino acid control. The phenylalanine/tyrosine-deficient drink differentially lowered alcohol consumption, consistent with other data in this species and elsewhere implicating dopamine in the rewarding effects of alcohol.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-2072
    Keywords: Key words Forced swimming test ; (±) Pindolol ; 5-HT1A receptor ; 5-HT1B receptor ; 5-HT2 receptor ; 5-HT3 receptor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The present study was undertaken to identify the receptor subtypes involved in (±) pindolol’s ability to enhance the effects of antidepressant drugs in the mouse forced swimming test. Interaction studies were performed with S 15535 (presynaptic 5-HT1A receptor agonist) and methiothepin (5-HT1B autoreceptor antagonist) in an attempt to attenuate or potentiate antidepressant-like activity. (±) Pindolol was tested in combination with selective agonists and antagonists at 5-HT1, 5-HT2 and 5-HT3 receptor subtypes. Pretreatment with S 15535 and methiothepin attenuated the activity of paroxetine, fluvoxamine and citalopram (32 mg/kg, IP; P 〈 0.01). (±) Pindolol (32 mg/kg, IP.) induced significant anti-immobility effects when tested in combination with 5-methoxy-3-(1,2,3,6-tetrahydro-4-pyridyl)-1H-indole (RU 24969) (1 mg/kg, IP; P 〈 0.05), 1-(2-methoxyphenyl)-4-[-(2-phthalimido) butyl]piperazine) (NAN 190) (0.5 mg/kg; P 〈 0.05) and ondansetron (0.00001 mg/kg, IP; P 〈 0.01). Pretreatment with NAN 190 (0.5 mg/kg, IP) potentiated the effects of RU 24969 (1 mg/kg, IP; P 〈 0.05) and (±) pindolol (32 mg/kg, IP; P 〈 0.05) in the forced swimming test, as did ondansetron (0.00001 mg/kg, IP). Significant additive effects were induced when RU 24969 (1 mg/kg, IP) was tested in combination with NAN 190 (0.5 mg/kg, IP; P 〈 0.05), (±) pindolol (32 mg/kg, IP; P 〈 0.05) and ondansetron (0.0000 mg/kg, IP; P 〈 0.05). 8-Hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) (1 mg/kg, IP) or ketanserin (8 mg/kg, IP) did not induce significant antidepressant-like effects with any of the agonists/antagonists tested. The results of the present study suggest that pindolol is acting at presynaptic 5-HT1B serotonergic receptors, in addition to the 5-HT1A subtype, in augmenting the activity of antidepressants in the mouse forced swimming test.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...