Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 105 (1975), S. 21-25 
    ISSN: 1432-072X
    Keywords: Chlamydomonas reinhardii ; Nitrate Reductase ; Nitrite Reductase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In Chlamydomonas reinhardii the reduction of nitrate to ammonia occurs in two independent enzymatic steps: 1. the two-electrons reduction of nitrate to nitrite catalyzed by NADH-nitrate reductase, and, 2. the six-electrons reduction of nitrite to ammonia catalyzed by ferredoxin-nitrite reductase. Both enzymes have been purified and characterized, and some of their properties have been studied.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 36 (1976), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The enzymes responsible for nitrate reduction in Chlamydomonas reinhardii, namely NADH-nitrate reductase and ferredoxin-nitrite reductase, have been further characterized. The first activity of the nitrate reducing complex, NADH-diaphorase, is protected by FAD against thermic inactivation. This fact suggests an important structural and functional role for this nucleotide in the first moiety of the nitrate reductase complex. The effect of p-hydroxymercuribenzoate on the diaphorase activity and the protection by NADH against its inactivation indicate that some—SH groups participate in the electron transfer mediated by diaphorase.Radioactive labelling of nitrate reductase with 99Mo and 185W as well as competition experiments between Mo and W indicate that molybdenum is an essential component of terminal nitrate reductase activity. Iron seems to participate in the redox processes mediated by both nitrate and nitrite reductases as suggested by experiments performed at physiological level. Finally a tentative mechanism for the whole process of nitrate assimilation in Chlamydomonas is proposed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 33 (1987), S. 289-303 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Dynamic shear experiments in the linear range of deformation and extensional tests at constant strain rate have been carried out on a linear low-density polyethylene (LLDPE) melt and on two branched low-density polyethylene (LDPE) melts with different amounts of long-chain branching. Both the dynamic shear moduli and the tensile stress obey the time-temperature superposition principle. A simple model based on a nonaffine generalized Maxwell model with two relaxation times is proposed to describe the rheological behavior in elongation of these melts. Close agreement between the model and the experimental data can be obtained by adjusting the two relaxation times and the “slip parameter” of entanglements. The variations of these parameters with strain rate and their relationship with molecular structure are discussed.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...