Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1890
    Keywords: Key words: Arbuscular mycorrhiza – Hyphal N uptake –15N-labelled fertilizer – Drought stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. The ability of the external mycelium in arbuscular mycorrhiza for N uptake and transport was studied. The contribution of the fungal symbiont to N acquisition by plants was studied mainly under water-stressed conditions using 15N. Lettuce (Lactuca sativa L) was the host for two isolates of the arbuscular mycorrhizal fungi Glomus mosseae and G. fasciculatum. The experimental pots had two soil compartments separated by a fine mesh screen (60 μ). The root system was restricted to one of these compartments, while the fungal mycelium was able to cross the screen and colonize the soil in the hyphal compartment. A trace amount of 15NH+ 4 was applied to the hyphal compartment 1 week before harvest. Under water-stressed conditions both endophytes increased the 15N enrichment of plant tissues; this was negligible in nonmycorrhizal control plants. This indicates a direct effect of arbuscular mycorrhizal fungi on N acquisition in relatively dry soils. G. mosseae had more effect on N uptake and G. fasciculatum on P uptake under the water-limited conditions tested, but both fungi improved plant biomass production relative to nonmycorrhizal plants to a similar extent.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Mycorrhiza 4 (1994), S. 161-168 
    ISSN: 1432-1890
    Keywords: Key words:Annona cherimola– Mycotrophy – Arbuscular mycorrhizae –Glomus species – Morphology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. The mycotrophic character of Annona cherimola (Magnoliales), a tropical/subtropical plantation crop of interest, is described for the first time. This crop seems to depend on mycorrhizae (arbuscular) for optimal growth, with Glomus deserticola being the most effective endophyte tested. Study of the morphology of the arbuscular mycorrhizae in Annona roots showed exclusively intracellular hyphal development, with cell-to-cell fungal passage and an abundance of arbuscules and coiled hyphae within cells. Intercellular distributive hyphae were not observed. The morphology and the pattern of spread of the mycorrhizal colonization were similar for the different endophytes involved and appeared to be dependent on the host root. Such features of mycorrhizal colonization are characteristic of host species lacking intercellular air channels and have been described for some species of ecological interest, but they are not commonly noted in the mycorrhizal literature, especially that dealing with crop species. Some ecophysiological consequences of this pattern of colonization are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1890
    Keywords: Key words Antagonistic microorganisms ; Arbuscular mycorrhizas ; Biocontrol ; Plant-defence response ; Sustainability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Biological control of plant pathogens is currently accepted as a key practice in sustainable agriculture because it is based on the management of a natural resource, i.e. certain rhizosphere organisms, common components of ecosystems, known to develop antagonistic activities against harmful organisms (bacteria, fungi, nematodes etc.). Arbuscular mycorrhizal (AM) associations have been shown to reduce damage caused by soil-borne plant pathogens. Although few AM isolates have been tested in this regard, some appear to be more effective than others. Furthermore, the degree of protection varies with the pathogen involved and can be modified by soil and other environmental conditions. This prophylactic ability of AM fungi could be exploited in cooperation with other rhizospheric microbial angatonists to improve plant growth and health. Despite past achievements on the application of AM in plant protection, further research is needed for a better understanding of both the ecophysiological parameters contributing to effectiveness and of the mechanisms involved. Although the improvement of plant nutrition, compensation for pathogen damage, and competition for photosynthates or colonization/infection sites have been claimed to play a protective role in the AM symbiosis, information is scarce, fragmentary or even controversial, particularly concerning other mechanisms. Such mechanisms include (a) anatomical or morphological AM-induced changes in the root system, (b) microbial changes in rhizosphere populations of AM plants, and (c) local elicitation of plant defence mechanisms by AM fungi. Although compounds typically involved in plant defence reactions are elicited by AM only in low amounts, they could act locally or transiently by making the root more prone to react against pathogens. Current research based on molecular, immunological and histochemical techniques is providing new insights into these mechanisms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1890
    Keywords: Arbuscular mycorrhiza ; Hyphal N uptake ; 15N ; labelled fertilizer ; Drought stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The ability of the external mycelium in arbuscular mycorrhiza for N uptake and transport was studied. The contribution of the fungal symbiont to N acquisition by plants was studied mainly under waterstressed conditions using 15N. Lettuce (Lactuca sativa L) was the host for two isolates of the arbuscular mycorrhizal fungi Glomus mosseae and G. fasciculatum. The experimental pots had two soil compartments separated by a fine mesh screen (60 μm). The root system was restricted to one of these compartments, while the fungal mycelium was able to cross the screen and colonize the soil in the hyphal compartment. A trace amount of 15NH 4 + was applied to the hyphal compartment 1 week before harvest. Under water-stressed conditions both endophytes increased the 15N enrichment of plant tissues; this was negligible in nonmycorrhizal control plants. This indicates a direct effect of arbuscular mycorrhizal fungi on N acquisition in relatively dry soils. G. mosseae had more effect on N uptake and G. fasciculatum on P uptake under the water-limited conditions tested, but both fungi improved plant biomass production relative to nonmycorrhizal plants to a similar extent.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Mycorrhiza 4 (1994), S. 161-168 
    ISSN: 1432-1890
    Keywords: Annona cherimola ; Mycotrophy ; Arbuscular mycorrhizae ; Glomus species ; Morphology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The mycotrophic character of Annona cherimola (Magnoliales), a tropical/subtropical plantation crop of interest, is described for the first time. This crop seems to depend on mycorrhizae (arbuscular) for optimal growth, with Glomus deserticola being the most effective endophyte tested. Study of the morphology of the arbuscular mycorrhizae in Annona roots showed exclusively intracellular hyphal development, with cell-to-cell fungal passage and an abundance of arbuscules and coiled hyphae within cells. Intercellular distributive hyphae were not observed. The morphology and the pattern of spread of the mycorrhizal colonization were similar for the different endophytes involved and appeared to be dependent on the host root. Such features of mycorrhizal colonization are characteristic of host species lacking intercellular air channels and have been described for some species of ecological interest, but they are not commonly noted in the mycorrhizal literature, especially that dealing with crop species. Some ecophysiological consequences of this pattern of colonization are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0789
    Keywords: Vesicular-arbuscular mycorrhiza ; N2 fixation ; 15N-labelled fertilizers ; Rhizobium ; Legume symbiosis ; Drought stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The legume Medicago sativa (+Rhizobium melilott) was grown under controlled conditions to study the interactions between soluble P in soil (four levels), or a mycorrhizal inoculum, and the degree of water potential (four levels) in relation to plant development and N2 fixation. 15N-labelled ammonium sulphate was added to each pot for a qualitative estimate of N2 fixation, in order to rank the effects of the different treatments. Dry-matter yield, nutrient content and nodulation increased with the amount of plant-available P in the soil, and decreased as the water stress increased, for each P-level. The mycorrhizal effect on dry matter, N yield, and on nodulation was little affected by the water potential. Since P uptake was affected by the water content in mycorrhizal plants, additional mechanisms, other than those mediated by P, must be involved in the mycorrhizal activity. There was a positive correlation between N yield and nodulation for the different P levels and the mycorrhizal treatment at all water levels. A high correlation between plant unlabelled N content and atom% 15N excess was also found for all levels of P. In mycorrhizal plants, however, the correlation between unlabelled N yield and 15N was lower. This suggests that mycorrhiza supply plants with other N sources in addition to those derived from the improvement on N2 fixation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 13 (1992), S. 155-159 
    ISSN: 1432-0789
    Keywords: Vesicular-arbuscular mycorrhiza ; Ca uptake ; Rhizobium ; Legume symbiosis ; Calcareous soils ; VAM incoculum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The legume Medicago sativa L. was grown in three calcareous soils supplied with increasing amounts of soluble phosphate, or a vesicular-arbuscular mycorrhizal (VAM) inoculum. The three test soils had high concentrations of extractable Ca. Analyses of dry-matter production and of the concentrations and content of the nutrients N, P, K, Ca, and Mg in plant tissues showed that, for each soil, a particular level of P application was able to match the VAM effects on N, P, and K levels. The Ca concentration and content in the VAM inoculated plants were, however, significantly lower than those in the P-supplied non-mycorrhizal treatments that matched the VAM effects. The N:P and the K:P ratios were about the same for mycorrhizal and non-mycorrhizal P-supplied control plants in all the three soils, but VAM inoculation lowered the Ca:P ratio in all soils. The mycorrhizae decreased Mg uptake in one of the soils, where non-mycorrhizal plants had high Mg concentrations in tissues. It is concluded that VAM depress the excessive acquisition of Ca by plants in calcareous soils.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 279 (1979), S. 325-327 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The experiment was carried out on an irrigated calcareous soil (pH, 7.8) in a fertile valley ('vega') in Granada province, Spain. Its texture was: 25.2% sand, 30.0% loam and 44.8% clay. The soil contained l,302p.p.m. total N, 415p.p.m. total K, 611 p.p.m. total P, 9.2 p.p.m. available phosphate23 ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-5036
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Culture supernatants ofAzotobacter vinelandii andAzotobacter beijerinckii contain auxins, at least three gibberellin-like substances and three cytokinin-like substances. Treating roots of tomato seedlings with these cultures accelerates plant growth and increases yield of fruit, effects probably caused by activity of the plant hormones. Amounts of hormones produced in these cultures are similar to those produced byAzotobacter chroococcum andAzotobacter paspali.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-5036
    Keywords: Endomycorrhiza ; Glomus mosseae ; Legume nodulation ; Medicago sativa ; Microbial fertilizers ; Phosphate-fixing soils ; Rhizobium meliloti
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The legumeMedicago sativa was grown in two phosphate-fixing soils which received soluble or rock phosphate. The effects of the inoculation withGlomus mosseae on plant nutrition and nodulation were studied. The introduced VA fungi became successfully established and improved the degree of infection over level achieved by native endophytes. In all experimental conditions tested, plant dry weight, the total uptake of N and P and nodulation byRhizobium meliloti were increased by mycorrhizal inoculation. The size of the increase was inversely correlated with soluble P content in the soil. Mycorrhization, enhanced by introduction of suitable VA fungi, had similar effects to that of the dose of soluble phosphate tested. Indigenous and native endophytes cooperated in these effects. Results are discussed in terms of reducing the input of soluble P fertilizer to phosphate-fixing soils and the possibility of restoring the phosphate stock using a more rational supply of soluble P, that allows cooperation with VA fungi, or by the use of less soluble and expensive forms of P fertilizers.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...