Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Materialart
Erscheinungszeitraum
Schlagwörter
  • 1
    Digitale Medien
    Digitale Medien
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 34 (1994), S. 642-649 
    ISSN: 0032-3888
    Schlagwort(e): Chemistry ; Chemical Engineering
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie , Maschinenbau , Physik
    Notizen: Polyurethane foam formation involves both polymerization and expansion processes. The dynamics of the water and R-11 blown foams depend on the rates of chemical and physical blowing processes, along with the rate of viscosity increase of the reacting mixture. Experiments were carried out to study the dynamics of free rising, water and R-11 blown rigid polyurethane foams. The density and temperature change during the foam formation were monitored. A theoretical model was developed to predict the density and temperature variation with time. In the model, the physical blowing agent (R-11) evaporation process is assumed to be heat generation-controlled and the carbon dioxide generation process to be controlled by the rate of the water-isocyanate reaction. The kinetic parameters of the reactions of isocyanate with polyol and water were obtained separately and were asssumed to be independent of each other. The water-isocyanate reaction appears to follow first-order kinetics with respect to concentration of water. The theoretical predictions of the model show good agreement with the experimental data for density variation with time. The model predictions for temperature rise also match experimental data, except at the later stages of foaming when it is found to be slower than the experimental measurements. However, this deviation does not affect the dynamics of density change since it occurs after the completion of the expansion process.
    Zusätzliches Material: 7 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 34 (1994), S. 632-641 
    ISSN: 0032-3888
    Schlagwort(e): Chemistry ; Chemical Engineering
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie , Maschinenbau , Physik
    Notizen: The dynamics of R-11 blown polyurethane foam formation depend on the rates of viscosity increase of the reacting mixture and R-11 evaporation, and both are controlled by the polymerization process. Detailed experiments were carried out to study the dynamics of foaming and the measurements made included the cream and rise times, the density change of the expanding foam with time, and the temperature rise during reaction. Dynamic temperature measurements at different points in the foaming mixture were also made to study the spatial variation of the temperature in the foam. The experimental results showed the rate of foaming, the final density, and the maximum temperature decreased with increasing R-11 concentration. The heat losses from the foam were also found to be significant towards the later stages of foaming when density was low. Theoretical models were developed to predict the temperature and density change with time and spatial variation of temperature in the foam due to heat losses, by considering the foaming dynamics to be either heat generation controlled or heat and mass transfer controlled. In the former, the foam was assumed to be a pseudohomogeneous phase and the approach was similar to that of Rojas, et al. (5). New features accounted for in the model were dilution of the reactant concentration due to the presence of liquid blowing agent and heat loss from the foam due to radiation. While excellent agreement between theoretical predictions and experimental results was obtained for temperature variation with time at different locations in the foam, the model gave a much sharper reduction in density with time as compared to the experimental data. In the second model, the rate of foaming was assumed to be controlled by the rate of heat and mass transfer to a single bubble in the foam. Assuming a film model for heat and mass transfer, the theoretical predictions for both temperature and density were found to be in very good agreement with experimental data.
    Zusätzliches Material: 11 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 33 (1993), S. 1611-1618 
    ISSN: 0032-3888
    Schlagwort(e): Chemistry ; Chemical Engineering
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie , Maschinenbau , Physik
    Notizen: High velocity jet impingement mixing is a unique operation of the reaction injection molding process. The quality of mixing depends on processing parameters for a given system, and can have significant effect on the properties of the product. We have compared three methods used for characterization of mixing quality reported in the literature for a cross-linking polyurethane system processed on an industrial scale high pressure RIM machine, with an L-type mixhead. The methods are based on, (i) visual appearance of a molded sample, (ii) adiabatic temperature rise during reaction and, (iii) flexural modulus of elasticity of a molded sample. The visual appearance test was made quantitative by using a color matching optical system. The adiabatic temperature rise increases rapidly with nozzle Reynolds number (Renzl) for polyol, up to a critical value (Renzl = 380) beyond which there is a slow increase. The latter is attributed to the geometry of the L-type mixhead. A simple analysis is presented to explain the limiting extent of mixing at high Renzl. The flexural modulus and the visual appearance of molded samples are found to improve until Renzl = 500, implying a greater sensitivity to mixing as compared to the adiabatic temperature rise.
    Zusätzliches Material: 9 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...