Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993), S. 463-475 
    ISSN: 0271-2091
    Keywords: Finite elements ; Streamline upwind ; Quadratic elements ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A direct streamline upwind method has been developed for convection-dominated flow problems utilizing quadratic elements. The approach presented retains the curve-sidedness feature offered by these elements. This facilitates the use of boundary conforming elements in domains that possess extreme curvature such as turbomachinery bladed components, for which the method is particularly suited. Three test cases are solved to evaluate the stability and diffusive characteristics of the numerical solution. The results presented clearly demonstrate that the proposed method does not exhibit any non-physical spatial oscillations, nor does it suffer from the traditional problem of excessive numerical diffusion.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 20 (1995), S. 169-185 
    ISSN: 0271-2091
    Keywords: Finite elements ; Multiblock ; Quadratic elements ; Equal-order ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A new multiblock pressure-based finite element algorithm has been developed. This methodology implements quadratic interpolation for both the elemental velocity and pressure fields. A direct streamline upwinding scheme previously developedby the authors is used to model the non-linear inertia effects. Details of the algorithm and its multiblock foundation are provided along with validating test cases. The results presented clearly demonstrate the accuracy of this new approach and the differences in the pressure field for an element using quadratic versus the traditional bi linear approximation of the pressure field.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 11 (1990), S. 227-245 
    ISSN: 0271-2091
    Keywords: Quasi-three-dimensional flow ; Aerofoil cascades ; Meridional/Blade-to-blade flow interaction ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A rigorous model of the fully elliptic flow over the blade-to-blade stream surface in an annular aerofoil cascade is developed. The model accuracy stems from its precise simulation of the meridional hub-to-casing flow effects, including those of the shear stress components that are created by the spanwise velocity gradients. These stresses are unprecedentedly introduced in the flow-governing equations in the form of source terms and are modelled as such. The final set of flow-governing equations are solved using the Galerkin weighted residual method coupled with a biquadratic finite element of the Lagrangian type. The flow solution is verified against the numerical results of a fully three-dimensional flow model and a set of experimental data, both concerning a low-aspect-ratio stator of an axial flow turbine under a low Reynolds number and subsonic flow operation mode. The numerical results in this case show well predicted aerofoil loading and pitch-averaged exit flow conditions. Also evident is a substantial capability of the analysis in modelling such critical regions as the wake subdomain. It is further proven that the new terms in the governing equations enhance the quality of the numerical predictions in this class of flow problems.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 25 (1997), S. 615-631 
    ISSN: 0271-2091
    Keywords: finite elements ; multiblock ; mixed order ; turbulence ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A new multiblock pressure-based finite element algorithm has been developed. This methodology implements a novel quadratic interpolation for the elemental pressure while using a bilinear interpolation for the velocity. Details of the algorithm and its multiblock foundation are provided along with a complete description of the implementation of the RNG-based k-ε model. The results presented clearly demonstrate the validity and accuracy of this new approach for complex flow problems such as diffusers. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...