Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 32 (1993), S. 5365-5372 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 226 (1970), S. 1248-1249 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Fig. 1. Effect of ATP and antimycin on absorption spectrum of cytochrome b in "A" particles6. The AmincoChance dual-wavelength spectrophotometer was used with the reference wavelength set at 560.5 nm. The particles (2.3 mg/ml.) were suspended in 0.17 M sucrose0.042 M Tris acetate (pH 7.4), ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    The protein journal 5 (1986), S. 177-192 
    ISSN: 1573-4943
    Keywords: ATP synthase ; catalytic-site cooperativity ; photoaffinity labeling ; dual-site catalysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The F1 part of the ATP synthase contains 6 nucleotide binding sites, four of which can be occupied and covalently labeled with 8-azido-adenine nucleotides. The other two sites contain tightly bound nucleotides that cannot be replaced by 8-azido-adenine nucleotides. Of the four exchangeable sites two are directly ivolved in catalysis and these are located on β-subunits, while the other two are located at α-β interfaces and have probably a regulatory role by influencing the affinity of the catalytic sites for substrate and product. When only one catalytic site contains substrate the affinity is very high, the rate of hydrolysis is slow, and the dissociation of products is even slower (single-site catalysis). When the second site also becomes occupied, the affinity decreases enormously, and the rate of hydrolysis and dissociation of products increases several orders of magnitude. When, however, the second site is occupied by substrate in such a way that turnover is not possible at this site (e.g., covalent linkage of nitreno-ATP), the first site is no longer active, apart from the very slow single-site catalysis. The two nonexchangeable, tightly bound nucleotides that cannot be replaced by 8-azido-nucleotides, can be replaced by 2-azido-nucleotides, due to their anticonfiguration. This anticonfiguration of the substrate is also required for binding with high affinity to a catalytic site. A picture emerges in which one of the three α-β pairs of F1 contains tightly bound, nonexchangeable nucleotides, while the other two contain both one catalytic site (on β) and one regulatory site (at the α-β interface). Cooperativity exists both between the two catalytic sites and between the catalytic and the regulatory sites.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...