Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 26 (1996), S. 75-106 
    ISSN: 0084-6600
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-482X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Electrical Engineering, Measurement and Control Technology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Single shear lap joints were made by soldering two Cu substrates with eutectic Sn-Ag solder, and its composite solders containing FeSn/FeSn2 or Ni3Sn2 intermetallic particles introduced by an in-situ method. Ageing of solder joints was performed at 70, 100, 120, 150, 180 °C for 1400 h. The growth of the interfacial intermetallic compound (IMC) layers was characterized assuming diffusion-controlled growth kinetics. Effects of such FeSn/FeSn2 and Ni3Sn4 particulates on the IMC layer growth rate were extensively characterized. Composite solder joints in the fabricated condition formed thinner IMC layers compared to the corresponding non-composite solder joints. The Cu6Sn5 IMC layer grew faster at temperatures above 120 °C (T/T m=0.8), while growing slower at temperatures below 120 °C in composite solder joints. In-situ introduced FeSn/FeSn2 and Ni3Sn4 particle reinforcements in composite solder joints proved effective in reducing the overall growth of the interfacial Cu6Sn5 IMC layer only at lower temperatures. Composite solder joints exhibited slower growth of the Cu3Sn layer during ageing at all temperatures used in this study. Two different regions having different activation energies depending on the temperature were identified for the growth of Cu6Sn5 and Cu3Sn IMC layers. © 2000 Kluwer Academic Publishers
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 25 (1990), S. 4125-4132 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The tensile behaviour of mechanically alloyed (dispersion strengthened) IN90211 was characterized at strain rates between 0.0001 and 340 sec−1 at temperatures between 425 and 475 ° C, At strain rates above 0.1 sec−1, superplastic elongations were obtained (maximum elongation 525% at 475 ° C, 2.5sec−1. Large elongations were possible due to the lack of cavitation, even though the strain-rate sensitivity was lower (m ≈ 0.25) than usually found in superplasticity. Cavitation was precluded by the morphology of the platelet-shaped grains in which low-angle subgrain boundaries were predominantly perpendicular to the tensile axis. Grain-boundary sliding was observed along high-angle grain boundaries which were generally parallel to the tensile axis. At the high homologous testing temperatures (0.76 to 0.81), concurrent grain-boundary sliding and lattice slip was made possible by the rapid lattice diffusivity and easy climb of lattice dislocations over dispersions in the matrix and grain boundaries.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 28 (1993), S. 2413-2422 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Superplastic deformation of mechanically alloyed aluminium IN90211 was studied by texture analysis. The textures in three deformed specimens were investigated as a function of strain using the three-dimensional crystal orientation distribution functions (CODFs). The results for the two superplastically deformed specimens (425 °C, strain rate of 1 s−1, stress near 50 MPa, and 475 °C, initial strain rate of 77 s−1, about 110 MPa) indicate that at strains below about 2.0, the specimen deforms by grain-boundary sliding and single (or double) slip, and at larger strains the deformation is dominated by grain-boundary sliding, multiple slip and some recrystallization. At 475°C, 330s−1, and stress near 160 MPa, the specimen was above the superplastic regime, and the resulting texture changes with deformation were markedly different from superplastic results, and quite unusual.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...