Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 92 (1996), S. 541-551 
    ISSN: 1432-2242
    Keywords: Synteny ; Orthologous evolution ; Genetic maps ; Triticeae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Comparative genetic mapping of rice and barley, both major crop species with extensive genetic resources, offers the possibility of uniting two well-established and characterized genetic systems. In the present study, we screened 229 molecular markers and utilized 110 polymorphic orthologous loci to construct comparative maps of the rice and barley genomes. While extensive chromosomal rearrangements, including inversions and intrachromosomal translocations, differentiate the rice and barley genomes, several syntenous chromosomes are evident. Indeed, several chromosomes and chromosome arms appear to share nearly identical gene content and gene order. Seventeen regions of conserved organization were detected, spanning 287 cM (24%) and 321 cM (31%) of the rice and barley genomes, respectively. The results also indicate that most (72%) of the single-copy sequences in barley are also single copy in rice, suggesting that the large barley genome arose by unequal crossing over and amplification of repetitive DNA sequences and not by the duplication of single-copy sequences. Combining these results with those previously reported for comparative analyses of rice and wheat identified nine putatively syntenous chromosomes among barley, wheat and rice. The high degree of gene-order conservation as detected by comparative mapping has astonishing implications for interpreting genetic information among species and for elucidating chromosome evolution and speciation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 93 (1996), S. 869-876 
    ISSN: 1432-2242
    Keywords: Microsatellites ; Hordeum vulgare ; Molecular marker ; Linkage map
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Simple sequence repeats (SSRs), or microsatellites, are a new class of PCR-based DNA markers for genetic mapping. The objectives of the present study were to develop SSR markers for barley and to integrate them into an existing barley linkage map. DNA sequences containing SSRs were isolated from a barley genomic library and from public databases. It is estimated that the barley genome contains one (GA)n repeat every 330 kb and one (CA)n repeat every 620 kb. A total of 45 SSRs were identified and mapped to seven barley chromosomes using doubled-haploid lines and/or wheat-barley addition-line assays. Segregation analysis for 39 of these SSRs identified 40 loci. These 40 markers were placed on a barley linkage map with respect to 160 restriction fragment length polymorphism (RFLP) and other markers. The results of this study demonstrate the value of SSRs as markers in genetic studies and breeding research in barley.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2242
    Keywords: RFLP ; Mapping ; Barley ; Genome ; Centromeres
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A map of the barley genome consisting of 295 loci was constructed. These loci include 152 cDNA restriction fragment length polymorphism (RFLP), 114 genomic DNA RFLP, 14 random amplified polymorphic DNA (RAPD), five isozyme, two morphological, one disease resistance and seven specific amplicon polymorphism (SAP) markers. The RFLP-identified loci include 63 that were detected using cloned known function genes as probes. The map covers 1,250 centiMorgans (cM) with a 4.2 cM average distance between markers. The genetic lengths of the chromosomes range from 124 to 223 cM and are in approximate agreement with their physical lengths. The centromeres were localized to within a few markers on all of the barley chromosomes except chromosome 5. Telomeric regions were mapped for the short (plus) arms of chromosomes 1, 2 and 3 and the long (minus) arm of chromosomes 7.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 88 (1994), S. 733-740 
    ISSN: 1432-2242
    Keywords: Restriction fragment length polymorphism (RFLP) ; Hordeum vulgare ; Quantitative resistance ; Erysiphe graminis f. sp.hordei ; Diallel
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Powdery mildew, caused byEryisphe graminis f. sp.hordei, is one of the most important diseases of barley (Hordeum vulgare). A number of loci conditioning resistance to this disease have been reported previously. The objective of this study was to use molecular markers to identify chromosomal regions containing genes for powdery mildew resistance and to estimate the resistance effect of each locus. A set of 28 F1 hybrids and eight parental lines from a barley diallel study was inoculated with each of five isolates ofE. graminis. The parents were surveyed for restriction fragment length polymorphisms (RFLPs) at 84 marker loci that cover about 1100 cM of the barley genome. The RFLP genotypes of the F1s were deduced from those of the parents. A total of 27 loci, distributed on six of the seven barley chromosomes, detected significant resistance effects to at least one of the five isolates. Almost all the chromosomal regions previously reported to carry genes for powdery mildew resistance were detected, plus the possible existence of 1 additional locus on chromosome 7. The analysis indicated that additive genetic effects are the most important component in conditioning powdery mildew resistance. However, there is also a considerable amount of dominance effects at most loci, and even overdominance is likely to be present at a number of loci. These results suggest that quantitative differences are likely to exist among alleles even at loci which are considered to carry major genes for resistance, and minor effects may be prevalent in cultivars that are not known to carry major genes for resistance.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 92 (1996), S. 541-551 
    ISSN: 1432-2242
    Keywords: Key words  Synteny ; Orthologous evolution ; Genetic maps ; Triticeae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract   Comparative genetic mapping of rice and barley, both major crop species with extensive genetic resources, offers the possibility of uniting two well-established and characterized genetic systems. In the present study, we screened 229 molecular markers and utilized 110 polymorphic orthologous loci to construct comparative maps of the rice and barley genomes. While extensive chromosomal rearrangements, including inversions and intrachromosomal translocations, differentiate the rice and barley genomes, several syntenous chromosomes are evident. Indeed, several chromosomes and chromosome arms appear to share nearly identical gene content and gene order. Seventeen regions of conserved organization were detected, spanning 287 cM (24%) and 321 cM (31%) of the rice and barley genomes, respectively. The results also indicate that most (72%) of the single-copy sequences in barley are also single copy in rice, suggesting that the large barley genome arose by unequal crossing over and amplification of repetitive DNA sequences and not by the duplication of single-copy sequences. Combining these results with those previously reported for comparative analyses of rice and wheat identified nine putatively syntenous chromosomes among barley, wheat and rice. The high degree of gene-order conservation as detected by comparative mapping has astonishing implications for interpreting genetic information among species and for elucidating chromosome evolution and speciation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 245 (1994), S. 187-194 
    ISSN: 1617-4623
    Keywords: Genetic diversity ; Germplasm ; indica-japonica differentiation ; Oryza sativa ; Simple sequence repeat (SSR)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Genetic polymorphisms of ten microsatellite DNA loci were examined among 238 accessions of landraces and cultivars that represent a significant portion of the distribution range for both indica and japonica groups of cultivated rice. In all, 93 alleles were identified with these ten markers. The number of alleles varied from a low of 3 or 4 at each of four loci, to an intermediate value of 9–14 at five loci, and to an extra-ordinarily high 25 at one locus. The numbers of alleles per locus are much larger than those detected using other types of markers. The number of alleles detected at a locus is significantly correlated with the number of simple sequence repeats in the targeted microsatellite DNA. Indica rice has about 14% more alleles than japonica rice, and such allele number differences are more pronounced in landraces than in cultivars. The indica-japonica differentiation component accounted for about 10% of the diversity in the total sample, and twice as much differentiation was detected in cultivars as in landraces. About two-thirds as many alleles were observed in cultivars as in landraces; another two-thirds of the alleles in the cultivar group were found in modern elite cultivars or parents of hybrid rice. The majority of the simple sequence repeat (SSR) alleles that were present in high or intermediate frequencies in landraces ultimately survived into modern elite cultivars and hybrids. The greater resolving power and the efficient production of massive amounts of SSR data may be particularly useful for germplasm assessment and evolutionary studies of crop plants.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...