Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-904X
    Keywords: niosomes ; nonionic surfactant vesicles ; estradiol ; transdermal delivery ; stratum corneum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The permeation of estradiol from vesicular formulations through human stratum corneum was studied in vitro. The vesicles were composed of nonionic n-alkyl polyoxyethylene ether surfactants (CnEOm). The thermodynamic activity of estradiol present in each formulation was kept constant by saturating all formulations with estradiol. The effects of both the particle size and the composition of the formulation on estradiol permeation across excised human stratum corneum were investigated. Stratum corneum that was pre-treated with empty surfactant carriers allowed for significantly higher estradiol fluxes compared with untreated stratum corneum. However, estradiol fluxes obtained in these pretreatment experiments appeared to be significantly lower than those obtained by the direct application of the estradiol-saturated carrier formulation on top of the stratum corneum. Furthermore, in the case of pretreatment of the stratum corneum, an increase in carrier size resulted in a decrease in estradiol flux. For direct application the opposite was found. Two mechanisms are proposed to play an important role in vesicle–skin interactions, i.e., the penetration enhancing effect of surfactant molecules and the effect of the vesicular structures that are most likely caused by adsorption of the vesicles at the stratum corneum–suspension interface.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-904X
    Keywords: buccal drug delivery ; buccal mucosa ; fluorescein isothiocyanate-labeled dextrans ; confocal laser scanning microscopy ; drug transport pathways
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The aim of this study was to characterize transport of FITC-labeled dextrans of different molecular weights as model compounds for peptides and proteins through buccal mucosa. The penetration of these dextrans through porcine buccal mucosa (a nonkeratinized epithelium, comparable to human buccal mucosa) was investigated by measuring transbuccal fluxes and by analyzing the distribution of the fluorescent probe in the epithelium, using confocal laser scanning microscopy for visualizing permeation pathways. The results revealed that passage of porcine buccal epithelium by hydrophilic compounds such as the FITC-dextrans is restricted to permeants with a molecular weight lower than 20 kDa. The permeabilities of buccal mucosa for the 4- and 10-kDa FITC-dextran (of the order of 10−8 cm/sec) were not significantly different from each other or from the much smaller compound FITC. The confocal images of the distribution pattern of FITC-dextrans showed that the paracellular route is the major pathway through buccal epithelium.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Pharmaceutical research 14 (1997), S. 1798-1803 
    ISSN: 1573-904X
    Keywords: iontophoresis ; apomorphine ; in vitro/in vivo correlation ; human skin ; skin metabolism ; Parkinson's disease
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Purpose. To investigate the feasibility of transdermal iontophoretic delivery of apomorphine in patients with Parkinson's disease, transdermal transport rates were optimized and validated across human stratum corneum and freshly dermatomed human skin in vitro. Methods. In all experiments R-apomorphine hydrochloride was applied in the anodal compartment. The effect on the flux of the following parameters was studied, using a flow through transport cell: current density, pH, concentration, ionic strength, osmolarity, buffer strength, temperature and skin type. Results. Transdermal transport of apomorphine was directly controlled by the presence or absence of current. Passive delivery was minimal and no depot effect was observed. A linear relationship was found between current density and steady-state flux. At room temperature the lag time was 30 to 40 minutes. A maximal steady-state flux was obtained when the donor concentration approached maximum solubility. By increasing the temperature of the acceptor chamber to 37°C, the steady-state flux was increased by a factor of 2.3 and the lag time decreased to ± 3 minutes. No effect of osmolarity and buffer strength, and only a small effect of ionic strength and pH on the transport rate were observed. The flux through dermatomed human skin was decreased compared to stratum corneum. This effect was shown not to be caused by skin metabolism. Conclusions. The results obtained in vitroindicate that the iontophoretic delivery of apomorphine can be controlled and manipulated accurately by the applied current. The in vitro flux furthermore depends on the donor composition, temperature and skin type. Under optimized conditions, transport rates resulting in therapeutically effective plasma concentrations are feasible, assuming a one to one in vitro/in vivo correlation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-904X
    Keywords: iontophoresis ; Parkinson's disease ; human ; pharmacodynamics ; transdermal delivery ; apomorphine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Purpose. Transdermal transport rates of the dopamine agonist R-apomorphine were determined in patients with idiopathic Parkinson's disease (IPD). Apomorphine was applied by iontophoresis at two current densities. Methods. In ten patients apomorphine was applied passively for one hour. Thereafter, in the first five patients, a current density of 250 μA.cm−2 was applied for one hour and a current density of 375 μA.cm−2 in the second group. The individual pharmacokinetic parameters were obtained separately following a 15-minute zero-order intravenous infusion of 30 μg.kg−1. Skin resistance was measured during current delivery. Current-induced irritation was measured by Laser Doppler Flowmetry (LDF). The pharmacodynamics were quantified by a unilateral tapping score. Qualitative clinical improvements (decreased tremor, rigidity or cramp) were also recorded. Results. In all patients increasing plasma concentrations of R-apomorphine were found during the interval of current application. The maximum concentrations that were attained were related to the applied current density: 1.3 ± 0.6 ng.ml−1 at 250 μA.cm−2 and 2.5 ± 0.7 ng.ml−1 at 375 μA.cm−2. When the current was switched off all concentrations returned to baseline values in about 90 minutes. By mathematical deconvolution of the profiles it was shown that steady-state fluxes were reached within the one-hour interval of current driven transport. Steady-state fluxes were calculated to be 69 ± 30 nmol.cm−2.h−1 at 250 μA.cm−2 and 114 ± 34 nmol.cm−2.h−1 at 375 μA.cm−2. Individual drug input rates were inversely related to the overall resistance. Significantly elevated LDF values were found after patch removal, indicating mild current induced erythema. Only subtherapeutic plasma concentrations were obtained in all patients except for one. Conclusions. The results show that current-dependent delivery of apomorphine is possible in vivo at acceptable levels of skin irritation. Excellent correlation was found between the calculatedin vivo transport rates and the rates that were previously obtained in vitro.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-904X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Purpose. To study the potential of buccal delivery of the peptide drug in pigs. Methods. Intravenous administration and buccal delivery without and with 10 mM sodium glycodeoxycholate (GDC) as absorption enhancer were investigated as a randomised cross-over study in six pigs. The buccal delivery device consisted of an application chamber with a solution of buserelin and was attached to the buccal mucosa for 4 hours using an adhesive patch. Results. Buccal administration of buserelin resulted in rapidly reached steady state plasma levels. The absolute bioavailability of the peptide after buccal delivery for 4 hours could be increased from 1.0 ± 0.3 to 5.3 ± 1.1% (mean ± S.D.) by co-administration of 10 mM GDC (0.45% w/v)). Conclusions. The results of this study demonstrate that buccal administration with the use of absorption enhancers is a useful approach for the delivery of peptide drugs such as buserelin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-904X
    Keywords: fatty acid ; skin permeation enhancement ; diffusion study ; differential thermal analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Purpose. This study aims to elucidate the skin permeation enhancement and the skin perturbation effects of a number of fatty acids, i.e. straight-chain saturated (SFA), monounsaturated (MUFA) and polyunsaturated acids (PUFA). Methods. The skin permeation enhancement effects were studied using human stratum corneum (SC) and p-aminobenzoic acid (PABA) as a model permeant. The fatty acids in propylene glycol (FA/PG) were applied according to a pre-treatment/co-treatment protocol. The perturbation effects were studied using differential thermal analysis (DTA) on SC after pretreatment with FA/PG. Results. SFA with 6 to 12 carbons exhibit a parabolic correlation between enhancement effect and chain-length, with a maximum at nonanoic-decanoic acids (with 9 and 10 carbons). Nonanoic and decanoic acids exert barely noticeable effects on the thermal behaviour of SC, suggesting that they easily mix with the skin lipids. All cis-6-, 9-, 11- or 13-octadecenoic acids (MUFA) enhance the permeation of PABA to the same extent. DTA revealed that the cis-9- and 13-isomers form a separate domain containing mostly the pure fatty acids within the SC lipids and suppress the lipid transitions at 70°/80°C. PUFA—linoleic (LA), α-linolenic (ALA) and arachidonic acids—enhance PABA permeation stronger than MUFA but additional double bonds do not further increase the degree of enhancement. LA and ALA form separate domains but do not completely suppress the SC lipid transitions at 70°/ 80°C. Increase in the enthalpy changes of 70°/80° transitions linearly correlates to the decrease in the permeability coefficients, suggesting that an increased perturbation of the skin lipids not necessarily has to yield an increased PABA permeation. Conclusions. The enhancement effects of fatty acids on the PABA penetration through SC are structure-dependent, associated with the existence of a balance between the permeability of pure fatty acids across SC and the interaction of the acids to skin lipids.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-904X
    Keywords: skin resistance and impedance ; skin appendages ; human and snake skin ; iontophoresis ; peptide delivery ; azone
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Purpose. 1. The assessment of the role of hair follicles and sweat glands in skin resistance and percutaneous iontophoretic flux of 9-desglycinamide, 8-arginine vasopressin (DGAVP) by comparing two skin species: human stratum corneum which contained hair follicles, sweat and sebaceous glands, and shed snake skin which lacked all appendages. 2. The effect of l-dodecylazacycloheptan-2-one (dodecyl-Azone, a lipid perturbing agent) on the iontophoretic DGAVP flux. Methods. Iontophoresis in vitro was performed in a transport cell (0.79 cm2 area available for percutaneous transport) by 8-hours application of a pulsed constant current of 100 Hz, 50% duty cycle and 0.26 mA.cm−2 current density delivered by a pair of Ag/AgCl electrodes, of which the anode was facing the anatomical surface of the skin samples. Results. The initial resistances of human stratum corneum and shed snake skin samples were of the same order of magnitude (20–24 kΩ.cm2) and both skin species showed a comparable resistance-decrease profile during 8-hours iontophoresis, indicating that the resistances were mainly determined by the stratum corneum and not greatly influenced by the appendageal structures. The initial resistances of the skin samples pretreated with dodecyl-azone were less than 50% of the values of untreated samples. Because dodecyl-azone is known to perturb the ordering of the intercellular lipids, the effect of azone on the resistance confirms that the resistance mainly resides within the intercellular lipids of the stratum corneum. No correlation was found between the iontophoretic DGAVP-flux and the conductance of human skin. For shed snake skin, however, a good correlation was found, indicating that the iontophoretic permeability of human skin in vitro for a peptide such as DGAVP is, unlike shed snake skin, not related to its overall permeability to ions. While the initial resistances of both human and snake skin were in the same order of magnitude and showed the same declining profile during iontophoresis, the steady state iontophoretic DGAVP flux across human stratum corneum was approximately 140 times larger than through shed snake skin. These findings suggest that small ions follow pathways common to both skin types, presumably the intercellular route, while the peptide on the other hand is transported differently: across snake skin presumably along intercellular pathways only, but across human stratum corneum along additional pathways (most likely of appendageal origin) as well. This interpretation is supported by the observations made of the effects of dodecyl-azone on DGAVP-iontophoresis. Pretreatment with dodecyl-azone did not significantly change steady state fluxes and lag times of DGAVP-iontophoresis across human stratum corneum, but resulted in a significant 3-fold lag time decrease and a 3-fold flux increase of DGAVP-iontophoresis across snake skin. Conclusions. The results of these in vitro studies emphasize the importance of the appendageal pathway for iontophoretic peptide transport across human stratum corneum.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-904X
    Keywords: captive bubble technique ; contact angles ; mucoad-hesion ; mucus ; Polycarbophil ; surface free energy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The possible role of surface energy thermodynamics in mucoadhesion was investigated with Polycarbophil and pig intestinal mucosa. In separate experiments, the surface energy parameters of the substrate (mucosa) and the adhesive (polymer film) were determined by contact angle measurements on captive air/octane bubbles in three physiologically relevant test fluids (isotonic saline, artificial gastric fluid, and artificial intestinal fluid). Whereas the swollen Polycarbophil films were relatively hydrophilic as indicated by small water contact angles (22, 23, and 16°), the water contact angles measured on mucosal tissue were significantly larger (61, 48, and 57°). Hence, mucus was found to possess an appreciable hydrophobicity. The measured adhesive performance (force of detachment) between Polycarbophil and pig small intestinal mucosa was highest in non-buffered saline medium, intermediate in gastric fluid, and minimal in intestinal fluid. In agreement with this trend, the mismatch in surface polarities between substrate and adhesive, calculated from the contact angle data, increased in the same order.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Pharmaceutical research 11 (1994), S. 1610-1616 
    ISSN: 1573-904X
    Keywords: human stratum corneum ; differential thermal analysis ; skin lipid ; subzero transition ; enhancer
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The thermal behaviour of human stratum corneum was studied using differential thermal analysis within the temperature range of −130°C to 120°C. Aside from thermal transitions at around 40°C, 70°C, 85°C and 100°C, which have been reported before, a particular transition below 0°C (subzero), at approx. −9°C (264 K), was noticed. This transition was present in the analysis curves of dehydrated as well as hydrated stratum corneum sheets and could be distinguished from the water peak found only in hydrated stratum corneum samples. To further characterize this transition, thermal analysis was performed on stratum corneum sheets: (i) after lipid extraction, (ii) after pre-treatment of propylene glycol and (iii) after pretreatment of oleic acid/propylene glycol solution. From the results, it was concluded that the subzero transition (−9°C) belongs to low melting lipid components of stratum corneum.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...