Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0738
    Keywords: Cadmium ; Resistance ; Transformation ; Golgi complex ; Cytoskeleton
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract A series of cell lines with different levels of resistance to continuous cadmium exposure has been developed from an immortal but non-transformed muntjac fibroblast cell line. Concentrations accepted in their culture medium range from 0.1 μM for the cadmium sensitive parent line to 5 μM for the intermediate “cadmium-tolerant” line, to 5, 10, 20 and 50 μM for the four “cadmium-resistant” lines. The present paper follows the morphological changes which accompanied the development of resistance through a 20-month pre-resistance period, a relatively abrupt 6-week transitional period and a 3-year post-resistance period, during which time levels of cadmium resistance were increased. Initial changes which led to the cadmium-tolerant CR5 cell line included (i) increased efficiency in autophagocytosing damaged cell components and in ridding the cell of residual waste materials, (ii) a reduction in fluid filled vacuoles and (iii) improved recycling and/or replacement of cadmium-damaged cell membrane. With the advent of cadmium resistance the intracellular damage necessitating these activities disappeared, yet the series of changes which occurred included a massive build-up of Golgi and the appearance of a trans-Golgi tubular network in addition to cytoskeletal and membrane changes. Though metallothionein levels are greater in the cadmium-resistant variants, their increase appears inadequate on their own to account for the high levels of resistance. The post-resistance changes which accompanied each step-up in cadmium resistance included further membrane and glycocalyx changes, in addition to continued increases in Golgi bodies and tubular network. This paper details the morphological changes which occurred throughout the 5-year period, tests the direct dependence of each on the presence of cadmium and examines their possible contribution to a cadmium protective mechanism.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0738
    Keywords: Cadmium ; Ultrastructure ; In vitro ; Nucleus ; Cytoplasm ; Muntjac
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract A detailed electron microscopy study of cadmium sensitive and resistant muntjac fibroblast cell lines has identified a wide range of intracellular damage following exposure to cadmium. Damaged organelles included cell membrane, mitochondria, Golgi cisternae and tubular network, chromatin, nucleoli, microfilaments and ribosomes. Although cell membrane damage was generally the earliest indication of adverse cadmium action, particularly with continuous cadmium exposures, cells could tolerate extensive membrane loss. Mitochondrial distortion and some damage to Golgi was also tolerated. The turning point at which cadmium became lethal was generally marked by a cascade of events which included damage to both nuclear and cytoplasmic components. These results for fibroblasts are discussed and compared with damage reported in other types of cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1572-9931
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract New cellular traits of Cockayne's syndrome (CS) associated with DNA precursor metabolism have been identified, namely, hypersensitivity to the toxicity of low concentrations of deoxyguanosine (dG) and abnormal changes in deoxyribonucleotide (dNTP) pools in response to dG or UV. dG treatment results in similar ribonucleotide pool changes in wild-type and CS cells, i.e., GTP levels increase at least twofold. However, the changes in the pool size of the purine deoxyribonucleotides are significantly different; in wild-type cells dATP and dGTP pools increase threefold, but remain unchanged in CS. The mechanism by which dG kills CS cells is not clear, but unlike the inherited purine nucleoside phosphorylase deficiency disease, the toxicity of dG is not due to the accumulation of dGTP and the consequent feedback inhibition of ribonucleotide reductase. UV induces different dNTP pool changes in CS and wild-type cells. In wild-type cells dTTP, dCTP, and dATP pools increase three- to fivefold within 4 h of irradiation, while the dGTP pool contracts. In CS cells, only the dGTP pool expands (four- to sixfold), while the other three contract. Each of these new phenotypic traits, together with UV sensitivity, is coordinately corrected in the complementing proliferating CSA × CSB hybrid cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...