Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract To determine the origin of juvenile loggerhead turtles (Caretta caretta) that occupy the Charleston Harbor Entrance Channel at Charleston, South Carolina, USA, mitochondrial DNA restriction-fragment length polymorphisms from this feeding population were compared to haplotypes from candidate nesting populations. Previous studies have defined two major nesting populations in the southeastern USA, one corresponding to Florida and the other to Georgia/South Carolina. These nesting populations are distinguished by both unique haplotypes and frequency distributions of common haplotypes. The frequency distribution of haplotypes in the juvenile feeding-ground population was significantly different from both nesting populations, implying that the feeding aggregate is drawn from two or more nesting populations. Assuming that these turtles are derived exclusively from rookeries in the southeastern USA, a maximum likelihood estimator indicates that approximately half are from the Florida rookery and half are from the northern (Georgia/South Carolina) rookery complex. Because 91% of nesting in the southeastern USA occurs in Florida rookeries and 8% in the northern complex, the 50:50 ratio indicates that juvenile turtles from Georgia and South Carolina tend to feed preferentially near their respective rookery locations. Human encroachment on this feeding habitat may pose an especially high risk to the smaller Georgia/South Carolina rookeries.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Migratory marine turtles are extremely difficult to track between their feeding and nesting areas, and the link between juvenile and adult habitats is generally unknown. To assess the composition of a feeding ground (FG) population of juvenile green turtles (Cheloniamydas Linnaeus), mitochondrial DNA control region sequences were examined in 80 post-pelagic individuals (straight carapace length = 31 to 67 cm) sampled in September 1992 from Great Inagua, Bahamas, and compared to those of 194 individuals from nine Atlantic and Mediterranean nesting colonies. Evidence from genetic markers, haplotype frequencies, and maximum likelihood (ML) analyses are concordant in indicating that multiple colonies contribute to the Bahamian FG population. ML analyses suggested that most Bahamian FG juveniles originated in the western (79.5%) and eastern (12.9%) Caribbean regions, and these proportions are roughly comparable to the size of candidate rookeries. These data support a life-cycle model in which individuals become pooled in post-hatchling (pelagic) and juvenile (benthic) habitats as a consequence of ocean currents and movement among FGs. A substantial harvest of immature turtles on their feeding pastures will influence the reproductive success of contributing nesting populations over a wide geographic scale.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Mitochondrial (mt) DNA control region sequences were analyzed for 249 Atlantic and Mediterranean loggerhead turtles (Carettacaretta Linnaeus, 1758) to elucidate nesting population structure and phylogeographic patterns. Ten haplotypes were resolved among individuals sampled between 1987 and 1993, from ten major loggerhead nesting areas in the region. Two distinct phylogenetic lineages were distinguished, separated by an average of 5.1% sequence divergence. Haplotype frequency comparisons between pairs of populations showed significant differentiation between most regional nesting aggregates and revealed six demographically independent groups, corresponding to nesting beaches from: (1) North Carolina, South Carolina, Georgia and northeast Florida, USA; (2) southern Florida, USA; (3) northwest Florida, USA; (4) Quintana Roo, Mexico; (5) Bahia, Brazil; and (6) Peloponnesus Island, Greece. The distribution of mtDNA haplotypes is consistent with a natal homing scenario, in which nesting colonies separated by a few hundred kilometers represent isolated reproductive aggregates. However, a strong exception to this pattern was observed in the first group defined by mtDNA data (North Carolina to northeast Florida), which included samples from four nesting locations spread across thousands of kilometers of coastline. These locations were characterized by a single haplotype in 104 out of 105 samples, providing inadequate resolution of population divisions. In view of the subdivisions observed elsewhere, we attribute the lack of differentiation between North Carolina and northeast Florida to recent colonization of these warm temperate coastlines (after the Wisconsin glaciation) not to ongoing gene flow among spatially distinct nesting locations. The relationships among observed haplotypes suggest a biogeographic scenario defined by climate, natal homing, and rare dispersal events. The redefined relationships among nesting aggregations in the western Atlantic region (southeastern USA and adjacent Mexico) prompt a reconsideration of management strategies for nesting populations and corresponding habitats in this region.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract To assess the influence of zoogeographic factors and life-history parameters (effective population size, generation length, and dispersal) on the evolutionary genetic structure of marine fishes in the southeastern USA, phylogeographic patterns of mitochondrial DNA (mtDNA) were compared between disjunct Atlantic and Gulf of Mexico populations in three coastal marine fishes whose juveniles require an estuarine or freshwater habitat for development. Black sea bass (Centropristis striata), menhaden (Brevoortia tyrannus andB. patronus) and sturgeon (Acipenser oxyrhynchus) samples were collected between 1986 and 1988. All species showed significant haplotype frequency differences between the Atlantic and Gulf, but the magnitude and distribution of mtDNA variation differed greatly among these taxa: sea bass showed little within-region mtDNA polymorphism and a clear phylogenetic distinction between the Atlantic and Gulf; menhaden showed extensive within-region polymorphism and a paraphyletic relationship between Atlantic and Gulf populations; and sturgeon exhibited very low mtDNA diversity both within regions and overall. Evolutionary effective sizes of the female populations (N f (e)) estimated from the mtDNA data ranged fromN f (e) = 50 (Gulf of Mexico sturgeon) toN f (e) = 800 000 (Atlantic menhaden), and showed a strong rank-order agreement with the current-day census sizes of these species. The relationship betweenN f (e) and the estimated times of divergence (t) among mtDNA lineages (from conventional clock calibrations) predicts the observed phylogenetic distinction between Atlantic and Gulf sea bass, as well as the paraphyletic pattern in menhaden, provided the populations have been separated by the same long-standing zoogeographic barriers thought to have influenced other coastal taxa in the southeastern USA. However, vicariant scenarios alone cannot explain other phylogenetic aspects of the menhaden (and sturgeon) mtDNA data and, for these species, recent gene flow between the Atlantic and Gulf coasts is strongly implicated. These data are relevant to management and conservation issues for these species.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK; Malden, USA : Blackwell Science Ltd
    Journal of fish biology 67 (2005), S. 0 
    ISSN: 1095-8649
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: To test three hypotheses accounting for bipolar distributions in Engraulis, seven of eight taxa (except E. eurystole) were surveyed with allozymes (34 loci) and 521 bp of the mitochondrial DNA cytochrome b gene. Both allozymes and mtDNA sequences revealed deep separations between New World and Old World anchovies with a mean allozyme genetic distance D = 1·26 and net mtDNA sequence divergence d = 15%. These values reflected separations of 5 to 10 million years. Contrary to previous phylogenetic hypotheses, which place north-east Pacific E. mordax and south-east Pacific E. ringens as sister taxa, the south-west Atlantic E. anchoita and E. ringens are most closely related to each other. The north-east Pacific E. mordax is the closest lineage to the Old World Engraulis, a group of taxa showing low divergences typical of population-level separations (mean D = 0·06; mean d = 0·87%). Bipolarities of sister taxa in the east Atlantic and west Pacific reflect recent dispersals. Bipolarities in the east Pacific and west Atlantic represent paraphyletic taxa in lineages isolated since the Miocene. None of the bipolarities can be attributed to tectonic separations or competitive displacements from the tropics, but the latter situation should be re-evaluated with comparisons to tropical anchovies of the New World.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...