Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Flow, turbulence and combustion 44 (1987), S. 197-207 
    ISSN: 1573-1987
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The complex fluid dynamics of two-phase bubbly flows in metallurgical reactors is modelled numerically by using a k−e turbulence model for the liquid phase, with a driving force determined by considering the motion of the bubbles. The latter are affected by the buoyancy forces and the drag caused by their relative motion with the mean and turbulent motions of the liquid, the turbulent component being obtained by random sampling to give an ensemble of bubble trajectories. The two-way coupling between the two phases is resolved by an iterative procedure which converges on a stable overall solution. The results are compared with measurements carried out on an air-water model and show good overall agreement.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Flow, turbulence and combustion 44 (1987), S. 241-259 
    ISSN: 1573-1987
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract This paper considers some aspects of the flow generated in a circular strand by a rotary electromagnetic stirrer. A review is given of one-dimensional models of stirring in which the axial variation in the stirring force is ignored. In these models the magnetic body force is balanced by shear, all the inertial forces being zero (except for the centripetal acceleration). In practice, the magnetic torque occurs only over a relatively short length of the strand. The effect of this axial dependence in driving force is an axial variation in swirl, which in turn drives a secondary poloidal flow. Dimensional analysis shows that the poloidal motion is as strong as the primary swirl flow. The principle force balance in the forced region is now between the magnetic body force and inertial. The secondary flow sweeps the angular momentum out of the forced region, so that the forced vortex penetrates some distance from the magnetic stirrer. The length of the recirculating eddy is controlled by wall shear. This acts, predominantly in the unforced region, to diffuse and dissipate the angular momentum and energy created by the body force.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 30 (1984), S. 490-492 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...