Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental biology online 2 (1997), S. 1-10 
    ISSN: 1430-3418
    Keywords: Carbonic anhydrase ; Blood ; Venous ; Muscle ; Carbon dioxide ; Disequilibrium ; Benzolamide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Acid-base equilibria/disequilibria were evaluated in vivo in post-branchial arterial blood and pre-branchial venous blood of freshwater rainbow trout (Oncorhynchus mykiss). This was accomplished using arterial and venous extracorporeal circuits in conjunction with a stopped-flow apparatus. After the abrupt stoppage of circulating post-branchial blood within the stopped-flow apparatus, pH increased slowly ([Delta]pH = +0.032 ± 0.004 pH units; n = 15), thus confirming the existence of an acid-base disequilibrium state in the arterial blood of rainbow trout. The slow downstream pH changes were unaffected by prior treatment of fish with the carbonic anhydrase inhibitor benzolamide (1.2 mg kg-1; [Delta]pH = +0.032 ± 0.01 pH units; n = 5) but were eliminated after intra-vascular injection of 10 mg kg-1 bovine carbonic anhydrase ([Delta]pH = -0.011 ± 0.003 pH units; n = 8). These results demonstrate that the acid-base disequilibrium in the arterial blood reflects a total absence of extracellular carbonic anhydrase activity. Similar stopped-flow experiments revealed the existence of a reduced, yet significant, acid-base disequilibrium in the venous blood circulating within the caudal vein ([Delta]pH = +0.004 ± 0.003 pH units; n = 15). Selective inhibition of extracellular carbonic anhydrase using benzolamide did not significantly influence the magnitude of the venous pH disequilibrium ([Delta]pH = +0.007 ± 0.007 pH units; n = 8) whereas intra-vascular injection of carbonic anhydrase eliminated the pH disequilibrium. These results demonstrate that extracellular carbonic anhydrase, although reported to be present within the skeletal muscle of rainbow trout, does not accelerate post-capillary pH changes in the venous circulation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-136X
    Keywords: Key words Hypercapnia ; Acid-base balance ; Ion regulation ; Blood gases ; Copper
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract In order to evaluate the impact of water-borne copper on acid-base regulation in fresh water rainbow trout, chronically cannulated fish were exposed to copper (0.6 mg 1−1), hypercapnia (water PCO2 of 6 mmHg) or a combination of copper and hypercapnia, while a fourth untreated group served as the control. Blood samples obtained at 0 h, 4 h and 24 h were analysed for acid-base status, ion concentrations and respiratory parameters. Tissue samples from caudal skeletal muscle, liver and gill filaments were examined for intracellular acid-base status, ion- and water contents, and copper concentration. Exposure to copper alone elicited a small extracellular metabolic alkalosis, no changes in arterial PO2, and a minor decrease in plasma ion concentrations. Hypercapnia alone increased arterial PCO2 from approximately 2 mmHg to 7.2 mmHg, but the extracellular respiratory acidosis present at 4 h was almost completely compensated at 24 h due to an increase in plasma bicarbonate concentration [HCO3 −] from 8.1 mM to 24.4 mM. Combined exposure to hypercapnia and copper resulted in a slightly larger acidosis at 4 h, and the fish failed to restore extracellular pH at 24 h, because plasma [HCO3 −] only increased to 16.3 mM. Fish exposed to hypercapnia and copper also showed a delayed recovery of intracellular pH in skeletal muscle, compared to fish exposure to hypercapnia only. Thus, copper exposure impaired both extracellular and intracellular acid-base regulation during hypercapnia. When seen in connection with only minor effects of copper on osmoregulatory and respiratory parameters, the reduced ability to regulate acid-base suggests that acid-base regulation may be one of the most copper-sensitive branchial functions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...