Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 8 (1988), S. 139-149 
    ISSN: 0271-2091
    Keywords: Integral equations ; Boundary elements ; Natural convection ; Penalty function ; Navier-Stokes equations ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: This paper presents a boundary element formulation employing a penalty function technique for two-dimensional steady thermal convection problems. By regarding the convective and buoyancy force terms in Navier-Stokes equations as body forces, the standard elastostatics analysis can be extended to solve the Navier-Stokes equations. In a similar manner, the standard potential analysis is extended to solve the energy transport equation. Finally, some numerical results are included, for typical natural convection problems, in order to demonstrate the efficiency of the present method.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Communications in Applied Numerical Methods 4 (1988), S. 617-622 
    ISSN: 0748-8025
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: Boundary element formulations employing time-independent fundamental solutions are becoming popular for treating transient problems described by parabolic or hyperbolic partial differential equations. This paper describes the extension of one such formulation, named the dual reciprocity boundary element method, to non-linear transient heat conduction problems with temperature-dependent material parameters and boundary conditions of the radiative type. The original non-linear diffusion equation is solved in a transform space, where it appears in a pseudo-linear form, since it contains a modified time variable which is itself a function of position. The problem is solved by using an iterative algorithm of the Newton-Raphson type.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...