Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 159 (1993), S. 6-15 
    ISSN: 1432-072X
    Keywords: Cytophaga xylanolytica ; Xylan ; Gliding bacteria ; Hemicellulose fermentation ; Biodegradation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Gliding bacteria attached in masses to, and dominated the fermentation of, xylan powder in methanogenic and sulfidogenic enrichments from various freshwater sediments. Isolates of such bacteria were all gram-negative, slender rods (0.4×4-24 μm) that formed no endospores, microcysts or fruiting bodies. Representative strain XM3 was a mesophilic, aeroduric anaerobe that grew by fermentation of mono-, di-, and poly-saccharides (but not cellulose) in a mineral medium containing up to 3% NaCl. However, CO2/HCO inf3 sup- was required in media for consistent initiation of growth. Fermentation products included acetate, propionate, succinate, CO2, and H2. Xylan-grown cells had xylanase and various glycosidase activities that were mainly or almost entirely cell-associated, respectively. Strain XM3 was weakly catalase positive, but oxidase negative; it possessed sulphonolipids and carotenoid, but not flexirubin, pigments; and its total cellular fatty acids were dominated by C15:0 anteiso (75%), n (13%) and iso (2%) isomers. Strain XM3 had 45.5 mol% G+C in its DNA, and partial sequencing of its 16S rRNA placed XM3 within the Bacteroides-Flavobacterium phylogenetic group. Similar strains were isolated from marine sediments. Strain XM3 is herewith proposed as the type strain of the new species, Cytophaga xylanolytica. Results, which are discussed in terms of our current concept of the genus Cytophaga, suggest that the importance of C. xylanolytica in anaerobic biopolymer decomposition has not been fully appreciated.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 150 (1988), S. 282-288 
    ISSN: 1432-072X
    Keywords: Sporomusa termitida ; Termite ; Nasutitermes nigriceps ; Gut microbe ; Hydrogen ; Acetogenic anaerobe
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract H2-oxidizing CO2-reducing acetogenic bacteria were isolated from gut contents of Nasutitermes nigriceps termites. Isolates were strictly anaerobic, Gram negative, endospore-forming, straight to slightly curved rods (0.5–0.8×2–8 μm) that were motile by means of lateral flagella. Cells were oxidase negative, but catalase positive and possessed a b-type cytochrome(s) associated with the cell membrane. Cells grew anaerobically with H2+CO2 as energy source and catalyzed a total synthesis of acetate from this gas mixture. H2 uptake by a representative isolate (strain JSN-2) displayed a K m=6 μM and V max=380 nmol x min-1 x mg protein-1. Other substrates used as energy sources for growth and acetogenesis included CO, methanol, betaine, trimethoxybenzoate, and various other organic acids. Succinate was also fermented, but propionate was formed from this substrate instead of acetate. Of a variety of sugars and sugar alcohols tested, only mannitol supported growth. Cells grew optimally at 30° C and pH 7.2 and required yeast extract or a source of amino acids (e.g. Casamino acids) for good growth. During initial enrichment and isolation, cells appeared sensitive to various reducing agents commonly employed in media for anaerobes. The DNA base composition of strain JSN-2 was 48.6 mol% G+C. On the bases of cell morphology, substrate utilization spectrum, and DNA base composition, strain JSN-2 is here-with proposed as the type strain of the new species Sporomusa termitida.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 161 (1994), S. 445-452 
    ISSN: 1432-072X
    Keywords: Halophilic Archaea ; Haloferax ; Aromaticring mineralization ; Benzoate ; Cinnamate ; Phenylpropanoate ; Oil brine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A pink-pigmented halophilic Archaeon, Strain D1227, was isolated from soil contaminated with oil brine and shown to be a member of the genus Haloferax, based on: (1) its hybridization with a 16S rRNA probe universal for the Archaea; (2) its resistance to a broad spectrum of antibiotics that affect Bacteria; (3) its requirement for at least 0.86 M NaCl and 25 mM Mg2+ for growth; (4) its possession of C50-carotenoids characteristic of the halophilic Arachaea; (5) the thin layer chromatographic pattern of its polar lipids, which was identical to that of other species of Haloferax; and (6) its pleomorphic cell morphology. However, in contrast to the known species of Archaea, Haloferax strain D1227 was able to use aromatic substrates (e.g., benzoate, cinnamate, and phenylpropanoate) as sole carbon and energy sources for growth. Physiologically similar organisms, such as Haloferax volcanii, Haloferax mediterrani, Haloarcula vallismortis, and Haloarcula hispanica, could not grow on these aromatic substrates. When grown on 14C-benzoate, strain D1227 mineralized 70% of the substrate and assimilated 19% of the 14C-label into cell biomass. In addition to growth on aromatic substrates, D1227 was also capable of growth on a variety of carbohydrates and organic acids. Optimum growth of strain D1227 occurred at 45°C in media containing 1.7–2.6 M NaCl and 100 mM Mg2+. Under optimum growth conditions, the cell shape varied from that of an oblate spheroid on mineral salts medium alone, to discshaped, irregular or triangular cells on the same medium amended with yeast extract and tryptone. To our knowledge, this is the first unequivocal demonstration of the ability of an Archacon to grow by mineralization of aromatic substrates, and it adds a new dimension to our appreciation of the physiological diversity of this group of prokaryotes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 156 (1991), S. 91-98 
    ISSN: 1432-072X
    Keywords: Acetonema longum ; Termite ; Pterotermes occidentis ; Gut microbe ; Hydrogen ; Acetogenic anaerobe
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A previously undescribed, H2-oxidizing CO2-reducing acetogenic bacterium was isolated from gut contents of the wood-feeding termite, Pterotermes occidentis. Cells of representative strain APO-1 were strictly anaerobic, Gram-negative, endospore-forming motile rods which measured 0.30–0.40×6–60 μm. Cells were catalase positive, oxidase negative, and had 51.5 mol percent G+C in their DNA. Optimum conditions for growth on H2+CO2 were at 30–33°C and pH (initial) 7.8, and under these conditions cells formed acetate according to the equation: 4 H2+2 CO2→CH3COOH+2 H2O. Other energy sources supporting good growth of strain APO-1 included glucose, ribose, and various organic acids. Acetate and butyrate were major fermentation products from most organic compounds tested, however propionate, succinate, and 1,2-propanediol were also formed from some substrates. Based on comparative analysis of 16S rRNA nucleotide sequences, strain APO-1 was related to, but distinct from, members of the genus Sporomusa. Moreover, physiological and morphological differences between strain APO-1 and the six known species of Sporomusa were significant. Consequently, it is proposed herewith that a new genus, Acetonema, be established with strain APO-1 as the type strain of the new species, Acetonema longum. A. longum may contribute to the nutrition of P. occidentis by forming acetate, propionate and butyrate, compounds which are important carbon and energy sources for termites.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-072X
    Keywords: Clostridium mayombei ; Soil-feeding termites ; Cubitermes speciosus ; Gut microbe ; Hydrogen ; Acetogenic bacteria
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Clostridium mayombei sp. nov., a previously undescribed H2-oxidizing CO2-reducing acetogenic bacterium, was isolated from gut contents of the African soilfeeding termite, Cubitermes speciosus. Cells were anaerobic, Gram positive, catalase and oxidase negative, endospore-forming motile rods which measured 1×2 – 6 μm and which had a DNA base composition of 25.6 mol% G+C (strain SFC-5). Optimum conditions for growth on H2+CO2 were at 33°C and pH 7.3, and under these conditions cells produced acetate according to the equation: 4 H2+2 CO2→CH3COOH+2 H2O. Other substrates supporting good growth included carbohydrates (e.g. glucose, xylose, starch), sugar alcohols, and organic and amino acids, and with these substrates acetate was almost always the principle fermentation product. Comparative analysis of 16S rRNA nucleotide sequences confirmed that C. mayombei was closely related to various members of the genus Clostridium. However, morphological and physiological differences between C. mayombei and other homoacetogenic clostridia were deemed significant enough to warrant creation of a new taxon. Results are discussed in light of the diversity of H2/CO2 acetogens recently isolated from various termites, and in terms of the relative importance of H2/CO2 acetogenesis to termite nutrition.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 156 (1991), S. 105-110 
    ISSN: 1432-072X
    Keywords: Mixotrophy ; Termite ; Gut microbe ; Acetogenic anaerobe ; Hydrogen ; Sporomusa termitida
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Cell suspensions of H2/CO2-grown Sporomusa termitida catalyzed an H2-supported synthesis of acetate from CO2 at rates of about 1 μmol acetate x h-1 x mg protein-1. Cells pre-grown on methanol, mannitol, lactate, or glycine also displayed H2-supported acetogenesis from CO2, although at rates 5–85% that of H2/CO2-grown cells. With methanol-grown cell suspensions: the presence of methanol greatly stimulated the rate of H2-supported conversion of 14CO2 to 14C-acetate (which became labeled mainly in the COOH-group); and like-wise the presence of H2 stimulated the conversion of 14CH3OH+CO2 to 14C-acetate (which became labeled mainlyan the CH3-group). Analogous stimulatory effects were observed for cell suspensions pre-grown on methanol + CO2+H2. Furthermore, when H2 (+CO2) was included as a growth substrate with either methanol or lactate: both substrates were used simultaneously; there was no diauxie in the growth of cells or in acetate production; and the molar growth yield of S. termitida was close to that predicted from summation of the yields observed when grown with each substrate alone. These data indicated that S. termitida can grow by mixotrophy, i.e. by the simultaneous use of H2/CO2 and organic compounds for energy. Results are discussed in light of the ability of H2/CO2 acetogens to outprocess methanogens in H2 consumption in the hindgut fermentation of wood-feeding termites.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 83 (1972), S. 261-277 
    ISSN: 1432-072X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary 1. Spirochaeta aurantia fermented glucose-1-14C primarily to ethanol, acetate, CO2, and H2. Most of the 14C-label was recovered from carbon 2 of ethanol and acetate, whereas essentially no radioactivity was present in CO2. Phosphofructokinase, fructosediphosphate aldolase, triosephosphate isomerase, and glyceraldehydephosphate dehydrogenase activities were detected in cell extracts. These data indicate that S. aurantia ferments glucose to pyruvate via the Embden-Meyerhof pathway. 2. Whole cells and cell extracts exhibited a coenzyme A-dependent CO2-pyruvate exchange. No formate-pyruvate exchange was detected, nor was formate involved in CO2 or H2 production. Acetyl phosphate formation from pyruvate by cell extracts was markedly stimulated by the presence of CoA in reaction mixtures. It was concluded that the organism utilizes a clostridial-type phosphoroclastic system to form acetyl-coenzyme A, CO2, and H2 from pyruvate. Acetyl CoA is metabolized to acetate via phosphotransacetylase and acetate kinase, or converted to ethanol by a double reduction involving aldehyde and alcohol dehydrogenase activities. 3. A rubredoxin, purified from cell extracts of S. aurantia, exhibited absorption maxima at 275, 376, and 490 nm (oxidized), and 275, 312, and 336 nm (NaBH4-reduced).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 83 (1972), S. 278-292 
    ISSN: 1432-072X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary 1. Growing cells of Spirochaeta aurantia performed an incomplete aerobic oxidation of glucose to CO2, acetate, pyruvate, and lactate. Approximately half of the glucose carbon metabolized was incorporated into cell material. Slightly more than one-third of the assimilated sugar carbon was recovered in cell lipids which comprise a large proportion (29 to 36%) of the dry weight of S. aurantia. 2. Aerobic and anaerobic molar growth yield determinations indicated that S. aurantia derives more energy from the aerobic oxidation of maltose than from fermentation of this sugar and suggested the presence of an oxidative phosphorylation mechanism in this bacterium. 3. O2-dependent NADH2 dehydrogenase activity, cytochrome b 558, and cytochrome o were associated primarily with the particulate portion of cell extracts of S. aurantia. The latter two pigments may be one and the same hemoprotein. No a or c-type cytochromes were detected in this spirochete. Protoheme, but not heme a or mesoheme, was detected in S. aurantia.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: . Small subunit (16S-like) ribosomal RNA sequences were obtained from representatives of all four families constituting the order Trichomonadida. Comparative sequence analysis revealed that the Trichomonadida are a monophyletic lineage and a deep branch of the eukaryotic tree. Relative to other early divergent eukaryotic assemblages the branching pattern within the Trichomonadida is very shallow. This pattern suggests the Trichomonadida radiated recently, perhaps in conjunction with their animal hosts. From a morphological perspective the Devescovinidae and Calonymphidae are considered more derived than the Monocercomonadidae and Trichomonadidae. Molecular trees inferred by distance, parsimony and likelihood techniques consistently show the Devescovinidae and Calonymphidae are the earliest diverging lineages within the Trichomonadida, however bootstrap values do not strongly support a particular branching order. In an analysis of all known 16S-like ribosomal RNA sequences, the Trichomonadida share most recent common ancestry with unidentified protists from the hindgut of the termite Reticulitermes flavipes. The position of two putative free-living trichomonads in the tree is indicative of derivation from symbionts rather than direct descent from some free-living ancestral trichomonad.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 87 (1990), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract The intestinal tract of invertebrate and vertebrate animals, including man, is an anoxic habitat wherein microbial formation of acetate from H2+ CO2 is often a major H2-consuming reaction. This paper will discuss the magnitude and microbiology of H2/CO2 acetogenesis in animal guts, its impact on host animal nutrition, competition for H2 between anaerobic microbes, and the global significance of intestinal H2/CO2 acetogenesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...