Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 116 (2002), S. 955-963 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Laser-induced-fluorescence studies of calcium dimer deposited on large argon and neon clusters have been performed. The spectroscopy of the Ca2 A state is slightly perturbed by the cluster surface leading to shifts and broadenings of the order or less than 100 cm−1. An absorption has been evidenced in the 530–550 nm wavelength range that is tentatively assigned to the yet undocumented A ′1Πu state of Ca2 correlating to the Ca(1D)+Ca(1S) asymptotic limit. The excited calcium dimer dynamics are very different in neon and argon clusters. The argon cluster is much more efficient for electronic and vibrational relaxation of the excited dimer. Finally, excitation in the blue of the calcium atomic resonance line leads to a competition between dissociation of the dimer with ejection of an excited calcium atom out of the cluster and the relaxation of the dimer to lower excited levels. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 112 (2000), S. 1744-1756 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The cluster isolated chemical reaction (CICR) technique was applied to neon clusters (Ne(approximate)7000) on which barium atoms and methane molecules were deposited. Clusters carrying barium only were studied first. Qualitatively, the present results on neon clusters are in line with our previous results on argon clusters. In particular, surface location of barium was observed. The central part of the present work concerns neon clusters carrying both one barium atom and one to ten methane molecules. Several types of spectroscopy were performed in the region of the resonance transition (6s2)1S→(6s6p)1P of barium (excitation spectrum of the total fluorescence, emission spectrum, action spectrum for forming (6s6p)3P), and experiments where the number of methane molecules per cluster, which was strictly controlled, was varied systematically. The corresponding results were interpreted on the ground of a model, which transposes both chemical thermodynamics of equilibria and reaction kinetics to CICR experiments. Such an approach has a strong relationship, although it is more simple, with the thermodynamical approach to reactions in micellar solutions. The present thermodynamical model helped us to determine the origin of the action spectrum for forming Ba(6s6p)3P in clusters carrying both one barium atom and an average of 2.5 methane molecules. This action spectrum was assigned to direct excitation of the Ba(CH4) and Ba(CH4)2 complexes. The present thermodynamical model was also applied to our former results on argon clusters. This allowed us to derive a consistent picture of the association reaction of barium with methane and of the quenching of electronic excitation of barium by methane in both environments. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1434-6079
    Keywords: PACS. 36.40.-c Atomic and molecular clusters – 82.33.Hk Reactions on clusters
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract: Spectroscopic experiments have been performed, providing emission and excitation spectra of calcium atoms trapped on argon clusters of average size 2 000. The two experimental spectra fall in the vicinity of the calcium resonance line 1P 1 → 1S0 at 422.9 nm. The excitation spectrum consists in two bands located on each side of the resonance line of the free calcium. In addition, Monte Carlo calculations, coupled to Diatomics-In-Molecule potentials are employed to simulate the absorption spectrum of a single calcium atom in the environment of a large argon cluster of average size 300. The theoretical absorption spectrum confirms the existence of two bands, and shows that these bands are characteristic of a calcium atom located at the surface of the argon cluster and correspond to the excited 4p orbital of calcium either perpendicular or parallel to the cluster surface. The precise comparison between the shape of the absorption spectrum and that of the fluorescence excitation spectrum shows different intensity ratios. This could suggest the existence of a non adiabatic energy transfer that quenches partly the fluorescence of trapped calcium. Another explanation, although less likely, could be a substantial dependence of the calcium oscillator strength according to the alignment of the calcium excited orbital with respect to the cluster surface. The emission spectrum always shows a band in the red of the resonance line which is assigned to the emission of calcium remaining trapped on the cluster. When exciting the blue band of the excitation spectrum, the emission spectrum shows a second, weak, component that is assigned to calcium atoms ejected from the argon clusters, indicating a competition between ejection and solvation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...