Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial & engineering chemistry research 33 (1994), S. 790-799 
    ISSN: 1520-5045
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial & engineering chemistry research 34 (1995), S. 4212-4221 
    ISSN: 1520-5045
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial & engineering chemistry research 34 (1995), S. 2566-2573 
    ISSN: 1520-5045
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1520-5045
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 43 (1997), S. 1828-1837 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: One of the challenges in building reaction mechanisms using algorithms for automated model construction is to describe the essential chemistry and enable prediction of experimental data over wide ranges of reaction conditions while maintaining a manageable model size. Two complementary methodologies for building compact reaction mechanisms were developed and combined with existing algorithms based on graph theory and bond-electron matrix operations. Each strategy was developed using pentadecylbenzene pyrolysis as an illustrative example. The first approach used a radical lumping strategy to group radicals according to their reactivity. The mechanism was reduced from 719 to 215 species and successfully predicted the experimentally observed initial reactivity. However, implementation of the radical lumping criteria alone was insufficient to allow for secondary reactions to higher-rank products. Therefore, on-the-fly sensitivity analysis was incorporated to identify the important and necessary species as the mechanism was generated to guide the mechanism building process. The generic algorithms developed can be applied to generate compact reaction mechanisms for a wide array of higher molecular-weight reactants.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0887-624X
    Keywords: polyamides ; model compound ; thermolysis ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: An experimental study to determine the effect of copper(I) iodide and water on the rate and product distribution of aliphatic-aromatic polyamide degradation was carried out by using N,N′-dihexylterephthalamide (DHT) and N,N′-dihexylisophthalamide (DHI) as models of the amide functionality. DHT was reacted in an inert argon atmosphere at 350°C in the presence of CuI added in amounts ranging from 0-5% by weight. The rate of disappearance of DHT was enhanced by a factor of three with the addition of 0.5% CuI. Increases to 5 wt % did not change the disappearance kinetics further. Comparison of the behavior of DHT and DHI revealed that changes in rate of disappearance and product yields were dependent on the relative positions of the amide substituents. Reaction of DHI was enhanced more significantly at a given CuI loading. The rate of disappearance of DHI and DHT and the selectivity to N-hexylbenzamide increased with the addition of water in loadings ranging from 0.148M to 0.193M. The reactivity of DHI was more greatly enhanced at a given water loading. These differences were attributed to electronic effects, as evaluated by differences in atomic partial charges, and physical effects. © 1995 John Wiley & Sons, Inc.
    Additional Material: 17 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0887-624X
    Keywords: aliphatic-aromatic ; polyamide ; catalyzed reactivity ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The relationship between the structure and reactivity of aliphatic-aromatic polyamides in the presence of CuI in an inert atmosphere was probed by reacting a family of benzamides with varying degrees of substitution on the amide nitrogen. Experiments with benzamide, N-methylbenzamide, N,N-dimethylbenzamide, N-hexylbenzamide, and N,N-dihexylbenzamide allowed comparison of primary, secondary, and tertiary benzamides and identification of the degradation pathways influenced by CuI. The presence of copper iodide enhanced the reactivity of all of the benzamides. Loadings as low as 0.5% led to higher conversion and increased recoverable product yields. Reaction path selectivities were also affected by the addition of CuI. The selectivity to benzene increased for all reactants, and the pathway leading to N-alkylation increased for the reaction of NHB. In all, these results revealed three major reaction pathways influenced by CuI: (1) N—C bond cleavage; (2) N—H bond cleavage; and (3) removal of the amide functional group from the aromatic ring. Kinetic results and visible color changes suggested a direct interaction of CuI with the reactant benzamide. Three electron-rich sites on the reactant benzamide, namely, the lone pairs on the carbonyl oxygen, the lone pair on the amide nitrogen and the aromatic ring, are likely sites of interaction of Cu+. Models invoking the subsequent reaction of complexes formed from Cu+ ion interaction at each of these sites account for the observed products well. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3305-3322, 1997
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 58 (1995), S. 1325-1334 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The dependence of the thermal stability of high-performance poly(arylether sulfones) (PAES) on the initial molecular weight distribution and backbone structure was assessed experimentally and through computer simulation. Reaction of PAES polymers resulted in the formation of an insoluble gel fraction and significant changes in weight and number average molecular weights of the sol fraction. A PAES with alternating ether and sulfone linkages formed a larger fraction of gel at a given reaction time than a PAES with the hydroquinone moiety. For a given chemical composition, more rapid molecular weight changes and gel fraction formation were observed for the polymer with the higher value of the initial weight average molecular weight. The growth of molecular weight was also faster for the polymer with the broader initial distribution. The simultaneous increase in Mw and decrease in Mn suggested the occurrence of two types of overall reactions: scission and addition. Simulation of these reactions using Monte Carlo kinetics allowed estimation of the range of probability for bond scission, R, of 0.5 〈 R 〈 0.8 capable of accounting for the observed experimental behavior. The dependence of the simulated molecular weight changes on the initial molecular weight distribution agreed qualitatively with the experimental trends. © 1995 John Wiley & Sons, Inc.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 56 (1995), S. 803-815 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: An experimental study to determine the effect of copper (I) iodide (Cul) on the rate and product distribution of degradation of a model of an aliphatic-aromatic polyamide was carried out. N,N′-Dihexylisophthalamide (DHI) was reacted in both an inert argon atmosphere and a pure oxygen environment at 350°C with CuI added in amounts ranging from 0 to 20% by weight. The rate of disappearance of DHI was enhanced by an order of magnitude when 0.5% by weight of CuI was added and was an increasing function of increasing CuI loading. Reaction in pure O2 increased the rate of DHI degradation by two orders of magnitude over that for neat DHI pyrolysis. The rate of disappearance of DHI in O2 was relatively unchanged when 5% CuI by weight was added. The transformations of DHI and its products are organized in terms of a set of reaction rules. This “reaction operator” formalism allowed computer generation of the reaction network and facilitated estimation of kinetic parameters. © 1995 John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...