Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-9729
    Keywords: Methylosinus trichosporium ; methanotroph ; trichloroethylene ; naphthalene ; methane monooxygenase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Methylosinus trichosporium OB3b biosynthesizes a broad specificity soluble methane monooxygenase that rapidly oxidizes trichloroethylene (TCE). The selective expression of the soluble methane monooxygenase was followed in vivo by a rapid colorimetric assay. Naphthalene was oxidized by purified soluble methane monooxygenase or by cells grown in copper-deficient media to a mixture of 1-naphthol and 2-naphthol. The naphthols were detected by reaction with tetrazotized o-dianisidine to form purple diazo dyes with large molar absorptivities. The rate of color formation with the rapid assay correlated with the velocity of TCE oxidation that was determined by gas chromatography. Both assays were used to optimize conditions for TCE oxidation by M. trichosporium OB3b and to test several methanotrophic bacteria for the ability to oxidize TCE and naphthalene.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 59 (1998), S. 732-746 
    ISSN: 0006-3592
    Keywords: Desulfovibrio vulgaris ; hydrogen cycling ; kinetics ; thermodynamics ; modeling ; anaerobic ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A unified model for the growth of Desulfovibrio vulgaris under different environmental conditions is presented. The model assumes the existence of two electron transport mechanisms functioning simultaneously. One mechanism results in the evolution and consumption of hydrogen, as in the hydrogen-cycling model. The second mechanism assumes a direct transport of electrons from the donor to the acceptor, without the participation of H2. A combination of kinetic and thermodynamic conditions control the flow of electrons through each pathway. The model was calibrated using batch experiments with D. vulgaris grown on lactate, in the presence and absence of sulfate, and was verified using additional batch experiments under different conditions. The model captured the general trends of consumption of substrates and accumulation of products, including the transient accumulation and consumption of H2. Furthermore, the model estimated that 48% of the electrons transported from lactate to sulfate involved H2 production, indicating that hydrogen cycling is a fundamental process in D. vulgaris. The presence of simultaneous electron transport mechanisms might provide D. vulgaris with important ecological advantages, because it facilitates a rapid response to changes in environmental conditions. This model increases our ability to study the microbial ecology of anaerobic environments and the role of Desulfovibrio species in a variety of environments. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 59:732-746, 1998.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...