Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Nucleoside transport processes regulate the levels of adenosine available to modulate neurotransmission, vascular tone and other physiological events. However, although equilibrative transporter transcripts or proteins have been mapped in the central nervous system of rats and humans, little is known about the presence and distribution of the complete family of nucleoside transporters in brain. In this study, we analysed the distribution of the transcript encoding the high affinity adenosine-preferring concentrative transporter CNT2 in the rat central nervous system and compared it with that of the equilibrative transporter ENT1. Furthermore, we evaluated the changes in expression of these two transporters in a situation of increased extracellular levels of adenosine, such as sleep deprivation. CNT2 mRNA was widespread in rat brain, although most prevalent in the amygdala, the hippocampus, specific neocortical regions and the cerebellum. The distribution of CNT2 mRNA only partially overlapped that of ENT1. Most of the cells labelled were neurones. Total sleep deprivation dramatically diminished the amounts of CNT2 mRNA, whereas ENT1 mRNA remained unchanged. This specific decrease in CNT2 transcript suggests a new physiological role for the transporter in the modulation of extracellular adenosine levels and the sleep/wakefulness cycle.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2/cell adhesion kinase β (PYK2/CAKβ) are related, non-receptor, cytoplasmic tyrosine kinases, highly expressed in the central nervous system (CNS). In addition, FAK+ is a splice isoform of FAK containing a 3-amino acid insertion in the carboxy-terminal region. In rat hippocampal slices, FAK+ and PYK2/CAKβ are differentially regulated by neurotransmitters and depolarization. We have studied the regional and cellular distribution of these kinases in adult rat brain and during development. Whereas PYK2/CAKβ expression increased with postnatal age and was maximal in the adult, FAK+ levels were stable. PYK2/CAKβ mRNAs, detected by in situ hybridization, were expressed at low levels in the embryonic brain, and became very abundant in the adult forebrain. Immunocytochemistry of the adult brain showed a widespread neuronal distribution of FAK+ and PYK2/CAKβ immunoreactivities (ir). PYK2/CAKβ appeared to be particularly abundant in the hippocampus. In hippocampal neurons in culture at early stages of development, FAK+ and PYK2/CAKβ were enriched in the perikarya and growth cones. FAK+ extended to the periphery of the growth cones tips, whereas PYK2/CAKβ appeared to be excluded from the lamellipodia. During the establishment of polarity, a proximal-distal gradient of increasing PYK2/CAKβ-ir could be observed in the growing axon. In most older neurons, FAK+-ir was confined to the cell bodies, whereas PYK2/CAKβ-ir was also present in the processes. In vitro and in vivo, a subpopulation of neurons displayed neurites with intense FAK+-ir. Thus, FAK+ and PYK2/CAKβ are differentially regulated during development yet they are both abundantly expressed in the adult brain, with distinctive but overlapping distributions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of neuroscience 7 (1995), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Focal adhesion kinase (pp125FAK, FAK) is a 125 kDa non-receptor tyrosine kinase enriched in focal adhesions of various cell types, where it is thought to transduce signals triggered by contact with the extracellular matrix. We have studied the expression and localization of FAK in rat CNS. Immunoblotting, immunohistochemistry and in situ hybridization revealed the presence of FAK in all regions of the adult brain and demonstrated its enrichment in specific neuronal populations of the cerebral and cerebellar cortex, as well as in the hippocampus. During development, FAK protein levels were highest around birth in cerebral cortex and caudate putamen and decreased in the adult. In situ hybridization revealed enrichment of FAK mRNA in the ventricular germinative and external layers during the last period of embryonic growth. In primary cultures FAK immunoreactivity was localized in focal adhesions in astrocytes, whereas in developing neurons the highest levels were found in growth cones and perikarya. In the growth cone, FAK immunoreactivity colocalized with actin filaments. In mature neurons FAK appeared to be distributed in the whole cytoplasm, with no enrichment in any cellular compartment. Our results demonstrate the presence of high levels of FAK in rat CNS, maximal during development but persistent in the adult. Its enrichment in growth cones suggests that it may play a role in neurite outgrowth, as well as in plasticity in the adult.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Bioscience reports 9 (1989), S. 559-564 
    ISSN: 1573-4935
    Keywords: lipase ; liver ; heparin perfusion ; hepatocytes ; hemopoietic cells ; neonate ; rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Hepatic endothelial lipase (HEL) activity is as high in the neonatal (1-day old) rat liver as in adults. Most of the HEL activity is located at the capillaries since 75% of the total activity is released by heparin or collagenase perfusion. The residual activity (non-releasable) is located in hepatocytes and not in hemopoietic cells, which are the major cell type in neonatal liver. Per mg of protein, the HEL activity is 50% higher in neonatal than in adult hepatocytes. We suggest that neonatal hepatocytes have an increased capacity to synthesize and secrete HEL activity, so maintaining a high activity in the whole organ. it might contribute to the hepatic uptake of cholesterol from circulating lipoproteins, in a period in which endogenous cholesterol synthesis is known to be inhibited in the liver.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...