Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The levels of mRNA encoding glutamic acid decarboxylase (GAD) and preproenkephalin (PPE) were measured by Northern blot analysis, in the dorsal and the ventral part of the striatum, following long-term treatments with drugs acting selectively on D1 or D2 dopaminergic receptors. Chronic injection of the selective D1 antagonist SCH 23390 elicited a significant decrease in level of both GAD and PPE mRNA (−30%) in the dorsal striatum, whereas no significant change was observed in the ventral striatum. Chronic administration of both SCH 23390 and RU 24926, a D2 agonist, decreased the GAD and PPE mRNA levels in the dorsal (−38 and −57%, respectively) as well as in the ventral (−70 and −60%, respectively) striatum. In the ventral striatum the marked reduction of GAD mRNA levels was paralleled by a significant decrease of Vmax values of GAD enzymatic activity (−41%). These results suggest that the decrease in content of both GAD and PPE mRNA, promoted by the chronic blockade of D1 receptors, is mainly due to the action of dopamine acting on unaffected D2 receptors. Indeed, this decrease is further amplified when the D2 agonist and the D1 antagonist are administered together. Our results substantiate further the molecular mechanisms by which dopamine acts on different populations of GABAergic and enkephalinergic neurons in the two striatal regions examined.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Binding assays of [3H]muscimol and [3H]-flunitrazepam have been performed on brain homogenates of brainstem, cerebellum, and forebrain of genetically epileptic quaking (qk) mutant mice 20, 40, 70, and 90 days old and their corresponding controls of the same strain (C57BL/ 6J). The endogenous γ-aminobutyric acid (GABA) content has been determined in various brain regions of 70-day-old qk and control mice. Finally, the behavioral effects of diazepam, of the mixed GABAA/GABAB receptor agonist progabide, and of the selective GABAB receptor agonist baclofen have been assessed in adult qk mutants. Our results strongly suggest a lack of involvement of GABAergic neurotransmission in the inherited epilepsy of the qk mutant mouse.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Levels of messenger RNA (mRNA) encoding glutamic acid decarboxylase (GAD) and preproenkephalin (PPE) were measured by Northern blot and in situ hybridization analyses in the striatum of the rat, after chronic injections of two neuroleptics, sulpiride and haloperidol. The Northern blot analysis showed that the chronic injection of sulpiride at high doses (80 mg/kg, twice a day, 14 days) increased striatal GAD and PPE mRNA levels by 120% and 78% respectively, when compared to vehicle-injected rats. Haloperidol injections at relatively low doses (1 mg/kg, once a day, 14 days) produced parallel increases in GAD (40%) and PPE (52%) mRNA levels. After in situ hybridization densitometric measurements were performed on autoradiograms from rats treated with sulpiride, haloperidol or vehicle. The distribution of GAD and PPE mRNA signals in control rats was homogeneous along the rostrocaudal extension of the striatum. A similar increase was found along this axis after sulpiride (20%) and haloperidol (30%) treatments. The cellular observation of hybridization signals showed that grain density for GAD mRNA was increased in a majority of striatal cells after both treatments. By contrast, the PPE mRNA hybridization signal only increased in a subpopulation of neurons. The effects of such treatments were also analysed by measuring GAD activity in the striatum and in its output structures, the globus pallidus and the substantia nigra. After the administration of sulpiride, GAD activity was not modified in the striatum but increased in the globus pallidus (by 17%). After haloperidol treatment, GAD activity was increased in the globus pallidus (20%) and the substantia nigra (17%). It is concluded that the interruption of dopaminergic transmission, more precisely the D2 receptor blockade, promotes in striatopallidal neurons an increase in GAD mRNA accompanied by an increase in GAD activity and PPE mRNA. A possible regulation of GAD mRNA and GAD activity in striatonigral neurons is also discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Ceramide, the central molecule of the sphingomyelin pathway, serves as a second messenger for cellular functions ranging from proliferation and differentiation to growth arrest and apoptosis. In this study we show that c2-ceramide induces apoptosis in primary cortical neuron cultures and that this effect correlates with differential modulation of mitogen-activated protein kinase (MAPK) cascades. Phosphorylation of extracellular signal-regulated kinases (ERKs) and their upstream activators MAPK kinases (MEKs), as measured by immunoblotting is rapidly decreased by c2-ceramide. However, the MEK inhibitor PD98059 alone does not induce apoptosis and in combination with c2-ceramide it does not modify c2-ceramide-induced apoptosis. Treatment with c2-ceramide increases p38 and c-Jun N-terminal kinase (JNK) phosphorylation before and during caspase-3 activation. The p38 inhibitor SB203580 partially protects cortical neurons against c2-ceramide-induced apoptosis, implicating the p38 pathway in this process. The c2-ceramide treatment also increases levels of c-jun, c-fos and p53 mRNA in primary cortical neuron cultures, but this is independent of p38 activation. Our study further elucidates the time-courses of MAPK cascade modulation, and of c-jun, c-fos and p53 activation during c2-ceramide-induced neuronal apoptosis. It reveals that one of the activated kinases, p38, is necessary for this apoptosis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: A major goal of research on addiction is to identify the molecular mechanisms of long-lasting behavioural alterations induced by drugs of abuse. Cocaine and delta-9-tetrahydrocannabinol (THC) activate extracellular signal-regulated kinase (ERK) in the striatum and blockade of the ERK pathway prevents establishment of conditioned place preference to these drugs. However, it is not known whether activation of ERK in the striatum is specific for these two drugs and/or this brain region. We studied the appearance of phospho-ERK immunoreactive neurons in CD−1 mouse brain following acute administration of drugs commonly abused by humans, cocaine, morphine, nicotine and THC, or of other psychoactive compounds including caffeine, scopolamine, antidepressants and antipsychotics. Each drug generated a distinct regional pattern of ERK activation. All drugs of abuse increased ERK phosphorylation in nucleus accumbens, lateral bed nucleus of the stria terminalis, central amygdala and deep layers of prefrontal cortex, through a dopamine D1 receptor-dependent mechanism. Although some non-addictive drugs moderately activated ERK in a few of these areas, they never induced this combined pattern of strong activation. Antidepressants and caffeine activated ERK in hippocampus and cerebral cortex. Typical antipsychotics mildly activated ERK in dorsal striatum and superficial prefrontal cortex, whereas clozapine had no effect in the striatum, but more widespread effects in cortex and amygdala. Our results outline a subset of structures in which ERK activation might specifically contribute to the long-term effects of drugs of abuse, and suggest mapping ERK activation in brain as a way to identify potential sites of action of psychoactive drugs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: It is now well established that central effects of Δ9-tetrahydrocannabinol (THC), the main psychoactive component of marijuana, are mediated by CB1 cannabinoid receptors. However, intraneuronal signalling pathways activated in vivo by THC remain poorly understood. We show that acute administration of THC induces a progressive and transient activation (i.e. phosphorylation) of the mitogen activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) in the dorsal striatum and the nucleus accumbens (NA). This activation, corresponding to both neuronal cell bodies and the surrounding neuropil, is totally inhibited by the selective antagonist of CB1 cannabinoid receptors, SR 141716A. However, blockade of dopaminergic (DA) D1 receptors by administration of SCH 23390, prior to THC, totally prevents ERK activation in the striatum, thus demonstrating a critical involvement of DA systems in THC-induced ERK activation. DA-D2 and glutamate receptors of NMDA subtypes also participate, albeit to a lesser extent, to THC-induced ERK activation in the striatum, as shown after injection of selective antagonists (raclopride and MK801, respectively). Furthermore, THC-induced phosphorylation of the transcription factor Elk-1, and up-regulation of zif268 mRNA expression are blocked by SL327, a specific inhibitor of MAPK/ERK kinase (MEK), the upstream kinase of ERK, as well as SCH 23390. Finally, using the place-preference paradigm, we show that ERK inhibition blocks THC-induced rewarding properties. Altogether, our data strongly support that ERK activation in the striatum is critically involved in long-term neuronal adaptive responses underlying THC-induced long-term behaviours.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: At proximal synapses from layer V pyramidal neurons from the rat prefrontal cortex, activation of group II metabotropic glutamate receptors (group II mGlu) by (2S,2′R,3′R)-2-(2′,3′-dicarboxycyclopropyl) glycine (DCG IV) induced a long-lasting depression of excitatory postsynaptic currents. Paired-pulse experiments suggested that the depression was expressed presynaptically. Activation of type 1 cannabinoid receptors (CB1) by WIN 55,212-2 occluded the DCG IV-induced depression in a mutually occlusive manner. At the postsynaptic level, WIN 55,212-2 and DCG IV were also occlusive for the activation of extracellular signal-regulated kinase. The postsynaptic localization of active extracellular signal-regulated kinase was confirmed by immunocytochemistry after activation of CB1 receptors. However, phosphorylation of extracellular signal-regulated kinase in layer V pyramidal neurons was dependent on the activation of N-methyl-d-aspartate receptors, consequently to a release of glutamate in the local network. Group II mGlu were also shown to be involved in long-term changes in synaptic plasticity induced by high frequency stimulations. The group II mGlu antagonist (RS)-alpha-methylserine-O-phosphate monophenyl ester (MSOPPE) favoured long-term depression. However, no interaction was found between MSOPPE, WIN 55,212-2 and the CB1 receptor antagonist SR 141716A on the modulation of long-term depression or long-term potentiation and the effects of these drugs were rather additive. We suggest that CB1 receptor and group II mGlu signalling may interact through a presynaptic mechanism in the induction of a DCG IV-induced depression. Postsynaptically, an indirect interaction occurs for activation of extracellular signal-regulated kinase. However, none of these interactions seem to play a role in synaptic plasticities induced with high frequency stimulations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 22 (2005), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: It is known that acute cocaine administration activates the extracellular signal-regulated kinase (ERK) pathway in the striatum, and results in transcription and translation of immediate early genes (IEGs). In the present study we investigated a possible involvement of ERK in the regulation of IEG expression in the amygdala, another brain structure known to be related to an addicted state. The patterns of cocaine-induced c-Fos, JunB and Zif268 protein expression were investigated, using an immunohistochemical approach, within distinct nuclei of the amygdala, either in the presence or absence of a selective inhibitor of the ERK pathway, SL327. Although these IEGs were similarly activated in the various nuclei of the amygdala after acute administration of cocaine, they showed different patterns after chronic injections. They also showed selective sensitivities to ERK inhibition. In particular, whereas c-Fos and JunB expressions were augmented following chronic cocaine treatment, as compared with acute treatment, Zif268 expression was decreased by this chronic treatment. Additionally, chronic blocking of ERK activation affected cocaine-induced c-Fos and JunB but not Zif268 expression. Thus, the differential involvement of ERK in chronic vs. acute regulation of IEGs may account for its specific role in addiction-related behavioral alterations, such as sensitization and tolerance.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...