Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Bone remodelling and bone loss are controlled by a balance between the tumour necrosis factor family molecule osteoprotegerin ligand (OPGL) and its decoy receptor osteoprotegerin (OPG). In addition, OPGL regulates lymph node organogenesis, lymphocyte development and interactions between T cells ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Originally published as Nature 402, 304–309; 1999 Bone remodelling and bone loss are controlled by a balance between the tumour necrosis factor family molecule osteoprotegerin ligand (OPGL) and its decoy receptor ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The tumour-necrosis-factor-family molecule osteoprotegerin ligand (OPGL; also known as TRANCE, RANKL and ODF) has been identified as a potential osteoclast differentiation factor and regulator of interactions between T cells and dendritic cells in vitro. Mice with a disrupted opgl gene show severe ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 31-49 
    ISSN: 0730-2312
    Keywords: Bax ; Bcl-2 ; Bcl-X ; bone ; programmed cell death ; p53 ; c-fos ; Msx-2 ; differentiation ; IRF-1 ; IRF-2 ; collagenase gene expression ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We present evidence of cell death by apoptosis during the development of bone-like tissue formation in vitro. Fetal rat calvaria-derived osteoblasts differentiate in vitro, progressing through three stages of maturation: a proliferation period, a matrix maturation period when growth is downregulated and expression of the bone cell phenotype is induced, and a third mineralization stage marked by the expression of bone-specific genes. Here we show for the first time that cells differentiating to the mature bone cell phenotype undergo programmed cell death and express genes regulating apoptosis. Culture conditions that modify expression of the osteoblast phenotype simultaneously modify the incidence of apoptosis. Cell death by apoptosis is directly demonstrated by visualization of degraded DNA into oligonucleosomal fragments after gel electrophoresis. Bcl-XL, an inhibitor of apoptosis, and Bax, which can accelerate apoptosis, are expressed at maximal levels 24 h after initial isolation of the cells and again after day 25 in heavily mineralized bone tissue nodules. Bcl-2 is expressed in a reciprocal manner to its related gene product Bcl-XL with the highest levels observed during the early post-proliferative stages of osteoblast maturation. Expression of p53, c-fos, and the interferon regulatory factors IRF-1 and IRF-2, but not cdc2 or cdk, were also induced in mineralized bone nodules. The upregulation of Msx-2 in association with apoptosis is consistent with its in vivo expression during embryogenesis in areas that will undergo programmed cell death. We propose that cell death by apoptosis is a fundamental component of osteoblast differentiation that contributes to maintaining tissue organization. J. Cell. Biochem. 68:31-49, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0730-2312
    Keywords: acidic FGF ; osteoblast differentiation ; collagenase ; osteopontin ; osteocalcin ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Fibroblast growth factors (FGF) are osteoblast mitogens, but their effects on bone formation are not clearly understood. Most in vitro studies examining the effects of FGFs on osteoblasts have been performed only during the initial proliferative stage of osteoblast culture. In these studies, we examined the consequential effect of acidic FGF in cultures of rat fetal diploid osteoblasts that undergo a developmental differentiation program producing a mineralized bone-like matrix. During the initial growth period (days 1-10), addition of acidic FGF (100 μg/ml) to actively proliferating cells increased (P 〈 0.05) 3H-thymidine uptake (2,515 ± 137, mean ± SEM vs. 5,884 ± 818 cpm/104 cells). During the second stage of maturation (days 10-15), osteoblasts form multilayered nodules of cells and accumulate matrix, followed by mineralization (stage 3, days 16-29). Addition of acidic FGF to the osteoblast cultures from days 7 to 15 completely blocked nodule formation. Furthermore, addition of acidic FGF after nodule formation (days 14-29) inhibited matrix mineralization, which was associated with a marked increase in collagenase gene expression, and resulted in a progressive change in the morphology of the nodules, with only a few remnants of nonmineralized nodules present by day 29. Histochemical and biochemical analyses revealed a decrease in alkaline phosphatase and mineral content, confirming the acidic FGF-induced inhibition of nodule and matrix formation. To identify mechanisms contributing to these changes, we examined expression of cell growth and bone phenotypic markers. Addition of acidic FGF during the proliferative phase (days 7-8) enhanced histone H4, osteopontin, type 1 collagen, and TGF-β mRNA levels, which are coupled to proliferating osteoblasts, and blocked the normal developmental increase in alkaline phosphatase and osteocalcin gene expression and calcium accumulation. Addition of acidic FGF to the cultures during matrix maturation (days 14-15) reactivated H4, osteopontin, type I collagen, and TGF-β gene expression, and decreased alkaline phosphatase and osteocalcin gene expression. In an in vivo experiment, rats were treated with up to 60 μg/kg/day acidic FGF intravenously for 30 days. Proliferation of osteoblasts and deposition of bone occurred in the marrow space of the diaphysis of the femur in a dose-related fashion. The metaphyseal areas were unaffected by treatment. In conclusion, our data suggest that acidic FGF is a potent mitogen for early stage osteoblasts which leads to modifications in the formation of the extracellular matrix; increases in TGF-β and collagenase are functionally implicated in abrogating competency for nodule formation. Persistence of proliferation prevented expression of alkaline phosphatase and osteocalcin, also contributing to the block in the progression of the osteoblast developmental sequence. © 1996 Wiley-Liss, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...