Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Applied mechanics and materials Vol. 1-2 (Sept. 2004), p. 45-50 
    ISSN: 1662-7482
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The design of high power ultrasonic cutting devices is based on tuning a blade to alongitudinal mode of vibration at a low ultrasonic frequency, usually in the range 20-100 kHz. To achieve the required cutting amplitude, gain is designed into the blade via profiling. It is expected that the use of higher-gain blades could enable longitudinal-mode guillotine-type cutting of a range of materials traditionally difficult to cut using this technology. Using a conventional high-gain blade, a feasibility study of ultrasonic cutting of bone is conducted using compact tension specimens of bovine femur. Finite element (FE) models are created, based on the assumption that the ultrasonic blade causes a crack to propagate in a controlled mode 1 opening. The models are compared with the experimental data collected from ultrasonic bone cutting experiments. Although the proposed cutting mechanism is supported by thedata, the blade gain is insufficient to enable through cutting of long bone or other difficult to cut materials. Consequently, the paper examines the relationship between gain, profile, stress and nodal position for a range of ultrasonic cutting blades with increased gain
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Applied mechanics and materials Vol. 3-4 (Aug. 2006), p. 79-84 
    ISSN: 1662-7482
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Damaging temperature effects observed during ultrasonic cutting operations are typically a result of friction between the vibrating blade and material, and combustion of debris. In order to prevent the high temperatures causing damage, the ultrasonic blade has to cut with a sufficient speed. This can be achieved either by applying a relatively high static load or by increasing the working vibration amplitude of the cutting edge, however, the result can be poor operational control and exceeding the fatigue limit of the blade, respectively. In this paper, the effect of blade tip profile is considered, particularly with reference to the influence of the cutting edge contact area on temperature under different static loading conditions. Titanium blades, with different cutting edge profiles are tested in a series of experiments that monitor cutting speed, static load, temperature around the cut site, and vibration amplitude at the cutting edge. The blades are tested cutting bovine femur and artificial bone material, and the cut surfaces are examined for signs of damage after each test. The experimental data reveal that blades with a small cutting edge contact area cut at a lower temperature, and that signs of thermal damage are less evident
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Applied mechanics and materials Vol. 13-14 (July 2008), p. 11-20 
    ISSN: 1662-7482
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Applications of power ultrasonics in engineering are growing and now encompass a widevariety of industrial processes and medical procedures. In the field of power ultrasonics, ultrasonicvibrations are used to effect a physical change in a medium. However, the mechanism by which aprocess can benefit from power ultrasonics is not common for all applications and can include oneor more of such diverse mechanisms as acoustic cavitation, heating, microfracture, surface agitationand chemical reactions. This paper presents two applications of power ultrasonics involving some ofthese different characteristics by concentrating on two case studies involving material failure(ultrasonic cutting) and acoustic cavitation (bacterial inactivation)
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 440-441 (Nov. 2003), p. 397-406 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...