Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 116 (1994), S. 5898-5908 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 113 (2000), S. 8918-8935 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The time-dependent density functional theory (TD-DFT) calculation of excitation spectra places certain demands on the DFT exchange–correlation potential, vxc, that are not met by the functionals normally used in molecular calculations. In particular, for high-lying excitations, it is crucial that the asymptotic behavior of vxc be correct. In a previous paper, we introduced a novel asymptotic-correction approach which we used with the local density approximation (LDA) to yield an asymptotically corrected LDA (AC-LDA) potential [Casida, Casida, and Salahub, Int. J. Quantum Chem. 70, 933 (1998)]. The present paper details the theory underlying this asymptotic correction approach, which involves a constant shift to incorporate the effect of the derivative discontinuity (DD) in the bulk region of finite systems, and a spliced asymptotic correction in the large r region. This is done without introducing any adjustable parameters. We emphasize that correcting the asymptotic behavior of vxc is not by itself sufficient to improve the overall form of the potential unless the effect of the derivative discontinuity is taken into account. The approach could be used to correct vxc from any of the commonly used gradient-corrected functionals. It is here applied to the LDA, using the asymptotically correct potential of van Leeuwen and Baerends (LB94) in the large r region. The performance of our AC-LDA vxc is assessed for the calculation of TD-DFT excitation energies for a large number of excitations, including both valence and Rydberg states, for each of four small molecules: N2, CO, CH2O, and C2H4. The results show a significant improvement over those from either the LB94 or the LDA functionals. This confirms that the DD is indeed an important element in the design of functionals. The quality of TDLDA/LB94 and TDLDA/AC-LDA oscillator strengths were also assessed in what we believe to be the first rigorous assessment of TD-DFT molecular oscillator strengths in comparison with high quality experimental and theoretical values. And a comparison has been given of TDLDA/AC-LDA excitation energies with other TD-DFT excitation energies taken from the literature, namely for the PBE0, HCTH(AC), and TDLDA/SAOP functionals. Insight into the working mechanism of TD-DFT excitation energy calculations is obtained by comparison with Hartree–Fock theory, highlighting the importance of orbital energy differences in TD-DFT. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 113 (2000), S. 7062-7071 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Time-dependent density-functional theory (TDDFT) is an increasingly popular approach for calculating molecular excitation energies. However, the TDDFT lowest triplet excitation energy, ωT, of a closed-shell molecule often falls rapidly to zero and then becomes imaginary at large internuclear distances. We show that this unphysical behavior occurs because ωT2 must become negative wherever symmetry breaking lowers the energy of the ground state solution below that of the symmetry unbroken solution. We use the fact that the ΔSCF method gives a qualitatively correct first triplet excited state to derive a "charge-transfer correction" (CTC) for the time-dependent local density approximation (TDLDA) within the two-level model and the Tamm-Dancoff approximation (TDA). Although this correction would not be needed for the exact exchange–correlation functional, it is evidently important for a correct description of molecular excited state potential energy surfaces in the TDLDA. As a byproduct of our analysis, we show why TDLDA and LDA ΔSCF excitation energies are often very similar near the equilibrium geometries. The reasoning given here is fairly general and it is expected that similar corrections will be needed in the case of generalized gradient approximations and hybrid functionals. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 101 (1979), S. 1638-1639 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 104 (1996), S. 5134-5147 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We report the implementation of time-dependent density-functional response theory (TD-DFRT) for molecules using the time-dependent local density approximation (TDLDA). This adds exchange and correlation response terms to our previous work which used the density-functional theory (DFT) random phase approximation (RPA) [M. E. Casida, C. Jamorski, F. Bohr, J. Guan, and D. R. Salahub, in Theoretical and Computational Modeling of NLO and Electronic Materials, edited by S. P. Karna and A. T. Yeates (ACS, Washington, D.C., in press)], and provides the first practical, molecular DFT code capable of treating frequency-dependent response properties and electronic excitation spectra based on a formally rigorous approach. The essentials of the method are described, and results for the dynamic mean dipole polarizability and the first eight excitation energies of N2 are found to be in good agreement with experiment and with results from other ab initio methods. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: This paper presents an evaluation of the performance of time-dependent density-functional response theory (TD-DFRT) for the calculation of high-lying bound electronic excitation energies of molecules. TD-DFRT excitation energies are reported for a large number of states for each of four molecules: N2, CO, CH2O, and C2H4. In contrast to the good results obtained for low-lying states within the time-dependent local density approximation (TDLDA), there is a marked deterioration of the results for high-lying bound states. This is manifested as a collapse of the states above the TDLDA ionization threshold, which is at −εHOMOLDA (the negative of the highest occupied molecular orbital energy in the LDA). The −εHOMOLDA is much lower than the true ionization potential because the LDA exchange-correlation potential has the wrong asymptotic behavior. For this reason, the excitation energies were also calculated using the asymptotically correct potential of van Leeuwen and Baerends (LB94) in the self-consistent field step. This was found to correct the collapse of the high-lying states that was observed with the LDA. Nevertheless, further improvement of the functional is desirable. For low-lying states the asymptotic behavior of the exchange-correlation potential is not critical and the LDA potential does remarkably well. We propose criteria delineating for which states the TDLDA can be expected to be used without serious impact from the incorrect asymptotic behavior of the LDA potential. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 98 (1993), S. 4753-4765 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: This paper presents a comparison between density functional theory local density approximation (LDA) and Hartree–Fock approximation (HFA) calculations of dipole moments, polarizabilities, and first hyperpolarizabilities, using "comparable'' basis sets, in order to assess the relative quality of the LDA and the HFA for calculating these properties. Specifically, calculations were done using basis sets of roughly double or triple zeta plus polarization quality, with and without added field-induced polarization (FIP) functions, for the seven small molecules H2, N2, CO, CH4, NH3, H2O, and HF, using the HFA option in the program HONDO8 and the LDA options in the programs DMol and deMon. For the calculations without FIP functions, the results from HONDO8 HFA and deMon LDA, both of which use Gaussian basis sets, are very similar, while DMol, which uses a LDA numerical atomic orbital basis set, gives substantially better results. Adding FIP functions does much to alleviate these observed basis set artifacts and improves agreement with experiment. With FIP functions, the results from the two sets of LDA calculations (deMon and DMol) are very similar to each other, but differ markedly from the HFA results, and the LDA results are in significantly better agreement with experiment. This is particularly true for the hyperpolarizabilities. This appears to be the first detailed study of DFT calculations of molecular first hyperpolarizabilities. We note that closer attention to numerical details of the finite field calculation of β(two down arrows) is necessary than would usually be the case with traditional ab initio methods. A proof that the Hellmann–Feynman theorem holds for Kohn–Sham calculations is included in the Appendix.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 27 (1985), S. 451-460 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The usefulness of the notion that a one-particle reduced local energy map can measure local errors in a trial wave function is investigated. Examination of the literature suggests that this notion rests on the assumption that a map of the relative error in the one-particle density behaves like the one-particle reduced local energy map. This is tested for several spinless one-dimensional one-particle systems. The assumption is discovered to be ill founded when applied to a certain contrived situation, and not to be quantitative when applied to familiar situations. The possibility remains, however, that the assumption may sometimes be useful for obtaining the correct ordering of trial wave functions with respect to the accuracy of certain types of expectation values.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 32 (1987), S. 435-456 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: We discuss the properties of a phase space distribution function that can be expressed as a Gaussian convolution of the Wigner function corresponding to the oneelectron charge density matrix for a many-electron system. This distribution function is known as the Husimi function. It is real and nowhere negative and can be interpreted as a probability density for finding an electron in a particular coherent state or, equivalently, for finding it in a region of phase space consistent with the uncertainty principle. Information is not lost in the transformation from the Wigner function, which can be recovered. We discuss the relationships among various functions and their Fourier transforms. The Husimi function does not have the ordinary densities as marginals but rather Gaussian convolutions of them, from which the ordinary densities can be recovered. Advantages of the Husimi function over the Wigner function for the interpretation of electronic structure are discussed. Illustrative results for the hydrogen atom and for the nitrogen atom at the SCF level are presented.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 45 (1993), S. 263-294 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: This paper considers a Husimi representation of quantum mechanics in which the (stationary) state of a system or ensemble is described by a Husimi function and an observable is described by a phase space function or distribution such that the expectation value of the observable is given by an integral over phase space of the product of that function or distribution and the Husimi function. The density matrix, Wigner function, and Husimi function are considered to be alternative ways of describing the state of a system or ensemble, and methods of recovering the Wigner function or density matrix from the Husimi function are discussed. The classical limits of the Wigner and Husimi functions and of the relationship between them are considered. © 1993 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...