Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0738
    Keywords: Key words Dopamine ; Excitatory amino acids ; EAAs ; Kainic acid ; N-methyl-d-aspartic acid ; NMDA ; Soman
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract There is an increasing amount of experimental evidence that excitatory amino acids (EAAs) are involved in the brain lesions observed after severe intoxication with the highly toxic organophosphorus compound soman. This study was undertaken to compare the acute actions of soman, and the glutamatergic receptor agonists kainic acid and N-methyl-d-aspartate (NMDA) on striatal release of dopamine and amino acids. The neurotoxic compounds were administered in high (10 mM) concentrations by unilateral intrastriatal microdialysis perfusion in freely moving rats. During the microdialysis the animals were observed for toxic signs related to convulsion. The glial fibrillary acidic protein (GFAP) was monitored as a marker of neurotoxicity in parts of prefrontal cortex, hippocampus, striatum and cerebellum. Acetylcholinesterase (AChE) inhibition in six brain regions was measured after soman perfusion in order to assess its cerebral distribution. We found that soman perfusion induced a major release of dopamine, GABA and aspartate in the striatum. Kainic acid also induced a release of dopamine and aspartate. NMDA was not as potent an inducer of striatal neurotransmitter release as soman and kainic acid. Soman and kainic acid perfusion produced convulsive behaviour in the rats. The main neurochemical event in the striatum during soman- and kainate-induced convulsions is the release of dopamine. We suggest that this major dopamine release might be as important as an increase in EAA in the cascade of pathological events leading to the brain damage in the striatum observed after soman intoxication.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0738
    Keywords: Key words Cerebrospinal fluid ; Cholinesterase ; Pigs ; Respiration ; Soman toxicokinetics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The toxicokinetics of the four stereoisomers of the nerve agent C(±)P(±)-soman was analysed in cerebrospinal fluid (CSF) and blood in anaesthetized, spontaneously breathing pigs during a 90-min period after injection of soman. The pigs were challenged with different intravenous (i.v.) doses of C(±)P(±)-soman corresponding to 0.75–3.0 LD50 (4.5, 9.0 and 18 μg/kg in a bolus injection and 0.45 μg/kg per min as a slow infusion). Artificial ventilatory assistance was given if, after soman intoxication, the respiratory rate decreased below 19 breaths/min. Blood samples were taken from a femoral artery and CSF samples from an intrathecal catheter. The concentrations of the soman isomers were determined by gas chromatography coupled with high resolution mass spectrometry. All four isomers of soman were detected in both blood and CSF samples. The relatively non-toxic C(±)P(+) isomers disappeared from the blood stream and CSF within the first minute, whereas the levels of the highly toxic C(±)P(−) isomers could be followed for longer, depending on the dose. Concurrently with the soman analyses in blood and CSF, cholinesterase (ChE) activity and cardiopulmonary parameters were measured. C(±)P(−) isomers showed approx. 100% bioavailability in CSF when C(±)P(±)-soman was given i.v. as a bolus injection. In contrast, C(±)P(−) isomers displayed only 30% bioavailability in CSF after slow i.v. infusion of soman. The ChE activity in blood decreased below 20% of baseline in all groups of pigs irrespective of the soman dose. The effect of soman intoxication on the respiratory rate, however, seems to be dose-dependent and the reason for ventilatory failure and death. Artificial ventilation resulted in survival of the pigs for the time-period studied.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0738
    Keywords: Key words Soman ; Seizures ; Brain ; Nitric oxide ; Lipid peroxidation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract We have investigated the effect of soman-induced seizures on rat brain levels of nitrogen oxides (NOx) and lipid peroxidation (LPO) 30 min and 24 h after intoxication. Following administration of soman (90 μg/kg s.c.), acetylcholinesterase activity was reduced to 〈10% of control after 30 min, whereas some de novo synthesis had occurred after 24 h. Significant increases in the LPO products malondialdehyde (MDA) and (E)-4-hydroxy-2-nonenal (4-HNE) were seen in the cortex, hippocampus, striatum, thalamus and medulla-pons 30 min after administration. A significant increase in the brain NOx levels, suggesting an increase in NO production, was seen in the cortex after 30 min and in the hippocampus and the striatum after 24 h. No significant changes were observed in cerebellum. These data suggest the possibility that free radical reactions may be a primary cause of neuronal degeneration after soman intoxication.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0738
    Keywords: Smoke ; Titanium tetrachloride ; Zinc chloride ; Hexachloroethane ; Inhalation toxicity ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Rats were exposed to white smoke generated from mixtures of titanium dioxide-hexachloroethane (TiO2-HC) and zinc-hexachloroethane (Zn-HC), respectively, in an inhalation chamber operated in the static mode. The dose was varied by varying the amount of smoke mixture and/or the exposure time. The acute inhalation toxicity of TiO2-HC smoke was much lower than the Zn-HC smoke. Thus, the animals survived exposure to TiO2-HC smoke, even at relatively high smoke concentrations. This smoke was irritating to the animals and minor, acute inflammatory changes were seen in lung tissue. In contrast, Zn-HC smoke was very toxic and caused lethal injuries to the experimental animals, even at relatively low concentrations. Pulmonary injuries were extensive and death was due to blood congestion with pulmonary oedema. Since the TiO2-HC and Zn-HC mixtures form TiCl4 and ZnCl2, respectively, a separate study was performed in which rats were exposed to TiCl4 gas or ZnCl2 aerosol. No animals died from exposure to TiCl4 at concentrations between 370 and 2900 mg/m3 for 10 min. The LC50 of ZnCl2 was found to be around 2000 mg/m3 during a 10-min exposure period. The difference between the two types of smoke is explained by the difference in toxicity between TiCl4 and ZnCl2.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...