Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Materialart
Erscheinungszeitraum
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Theoretical and computational fluid dynamics 11 (1998), S. 49-67 
    ISSN: 1432-2250
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Maschinenbau , Physik
    Notizen: Abstract: The forced transition of the boundary layer on an axisymmetric flared cone in Mach 6 flow is simulated by the method of spatial direct numerical simulation (DNS). The full effects of the flared afterbody are incorporated into the governing equations and boundary conditions; these effects include nonzero streamwise surface curvature, adverse streamwise pressure gradient, and decreasing boundary-layer edge Mach number. Transition is precipitated by periodic forcing at the computational inflow boundary with perturbations derived from parabolized stability equation (PSE) methodology and based, in part, on frequency spectra available from physical experiments. Significant qualitative differences are shown to exist between the present results and those obtained previously for a cone without afterbody flare. In both cases, the primary instability is of second-mode type; however, frequencies are much higher for the flared cone because of the decrease in boundary-layer thickness in the flared region. Moreover, Goertler modes, which are linearly stable for the straight cone, are unstable in regions of concave body flare. Reynolds stresses, which peak near the critical layer for the straight cone, exhibit peaks close to the wall for the flared cone. The cumulative effect appears to be that transition onset is shifted upstream for the flared cone. However, the length of the transition zone may possibly be greater because of the seemingly more gradual nature of the transition process on the flared cone.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1432-2250
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Maschinenbau , Physik
    Notizen: Abstract A highly accurate algorithm for the direct numerical simulation (DNS) of spatially evolving high-speed boundary-layer flows is described in detail and is carefully validated. To represent the evolution of instability waves faithfully, the fully explicit scheme relies on non-dissipative high-order compact-difference and spectral collocation methods. Several physical, mathematical, and practical issues relevant to the simulation of high-speed transitional flows are discussed. In particular, careful attention is paid to the implementation of inflow, outflow, and far-field boundary conditions. Four validation cases are presented, in which comparisons are made between DNS results and results obtained from either compressible linear stability theory or from the parabolized stability equation (PSE) method, the latter of which is valid for nonparallel flows and moderately nonlinear disturbance amplitudes. The first three test cases consider the propagation of two-dimensional second-mode disturbances in Mach 4.5 flat-plate boundary-layer flows. The final test case considers the evolution of a pair of oblique second-mode disturbances in a Mach 6.8 flow along a sharp cone. The agreement between the fundamentally different PSE and DNS approaches is remarkable for the test cases presented.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Springer
    Theoretical and computational fluid dynamics 7 (1995), S. 397-424 
    ISSN: 1432-2250
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Maschinenbau , Physik
    Notizen: Abstract The laminar breakdown of the boundary-layer flow of an axisymmetric sharp cone in a Mach 8 flow is simulated by a synergistic approach that combines the parabolized stability equation (PSE) method and spatial direct numerical simulation (DNS). The transitional state is triggered by a symmetric pair of oblique second-mode disturbances whose nonlinear interactions generate strong streamwise vorticity, which leads in turn to severe spanwise variations in the flow and eventual laminar breakdown. The PSE method is used to compute the weakly and moderately nonlinear initial stages of the transition process and, thereby, to derive a harmonically rich inflow condition for the DNS. The strongly nonlinear and laminar-breakdown stages of transition are then computed by well-resolved DNS, with a highly accurate algorithm that exploits spectral collocation and high-order compact-difference methods. Evolution of the flow is presented in terms of modal energies, mean quantities (e.g., skin friction), Reynolds stresses, turbulent kinetic energy, and flow visualization. The numerical test case is an approximate computational analog of one of the few stability experiments performed for hypersonic boundary-layer flows. Comparisons and contrasts are drawn between the experimental and the computational results. “Rope-like” waves similar to those observed in schlieren images of high-speed transitional flows are also observed in the numerical experiment and are shown to be visual manifestations of second-mode instability waves.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...