Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 62 (1986), S. 549-559 
    ISSN: 1432-1106
    Keywords: Cutaneous receptive fields ; Somatosensory cortex ; Cortical layers ; Quantitative analysis of receptive fields ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Quantitative techniques were used to demonstrate cortical layer differences in cutaneous receptive fields (RF's) in the rat SI cortex. Two- and three-dimensional (2-D and 3-D) RF maps were constructed showing the responsiveness of single neurons to standardized punctate stimulation of each of a matrix of points on the skin or the mystacial vibrissa pad. These allowed a visualization not only of the overall sizes of such RF's, but also their shape and “response profile”. Initial experiments showed that the sizes and response profiles of such RF's were similar whether they were mapped by sinusoidal mechanical vibration of skin, punctate touch, or direct intracutaneous electrical stimulation. This method was used to quantitatively determine distoproximal lengths of RF's of single units recorded at different depths in the forepaw area of the SI cortex. Plots of these RF lengths as a function of cortical depth showed that the smallest RF's were found in the granular layers (IV and deep III). RF's up to double that size were found in supragranular layers, and up to triple that size in infragranular layers. 3-D maps of RF's in the granular layers showed sharp central response peaks surrounded by very steep dropoffs to the RF boundaries. In the whisker areas, granular layer RF's were typically circular in shape and contained from 1–4 whiskers. By contrast, in supragranular layers they were often elongated in shape, and were oriented along rows or columns of whiskers. RF's in layer V resembled large, high plateaus, often supporting clearly separated peaks. RF's mapped in the fore- and hindpaw areas were similar, but, even in the granular layers, were often slightly elongated along the limb axis. In all regions of the SI, both the locations and shapes of the granular layer RF's appeared to be conserved as subsets of other more topographically heterogeneous RF's encountered elsewhere in the column. These findings may correlate with patterns of axonal connectivity in the rat SI.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1106
    Keywords: Ventroposterolateral thalamus ; Primary somatosensory cortex ; Afferent suppression ; Locomotion ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Single neurons were simultaneously recorded in the forepaw areas of the primary somatosensory (SI) cortex and ventroposterolateral (VPL) thalamus of awake rats during rest and running behaviors. Movement dependent changes in somatic sensory transmission were tested by generating post-stimulus histograms of these neurons' responses to stimulation through electrodes chronically implanted under the skin of the forepaw, while the aminal ran on a timed treadmill. As viewed in post-paw-stimulus histograms, the evoked unit responses (EURs) could be differentiated into short (4.5 ± 0.1−10.9 ± 0.2 ms) and longer (12.9 ± 0.4 31.3 ± ± 0.9 ms) latency components (“SEURs” and “LEURs”, respectively). The magnitudes of firing during these responses were measured and normalized as percent increases over background firing. By comparison with resting behavior, treadmill movement suppressed both SEURs and LEURs in the thalamus, as well as the cortex. The SEURs, however, were much more strongly suppressed in the SI cortex (−48.3 ± 2.7%) than in the VPL thalamus (−28.1 ± 6.7%). By contrast, similar magnitudes of suppression of LEURs were found in the SI (−25.8 ± 8.6%) and VPL (−26.5 ± 11.1%). These results suggest that the suppression of LEURs observed in the SI cortex may result from modulatory actions on subcortical circuits. Major suppression of SEURs, on the other hand, may occur intracortically, with a minor component ocurring subcortically. Thus, VPL thalamus and SI cortex in the rat appear to be differentially subject to movement related modulation of sensory transmission.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...