Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 84 (1980), S. 3537-3543 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 39 (1991), S. 709-727 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A theoretical model based on physical, chemical, and biochemical mechanisms has been presented to evaluate the yields of DNA strand breaks (single and double) as a function of linear energy transfer (LET) or -dE/dx. Energetic heavy charged particles are considered explicitly to provide a general theory for low- as well as for high-LET radiation. There are three main features of the calculation: (a) track structure considerations for the energy deposition pattern, (b) three-dimensional structure of DNA molecules to provide information on the exact location of damage, and (c) a Monte-Carlo scheme to simulate the diffusion processes of water radicals. To avoid the complexities of a cellular medium, an aqueous solution of DNA is considered in the calculation. When the results of the calculations are compared with experimental measurements of the yields of strand breaks in mammalian DNA (exposed in a cellular complex), reasonable agreement is obtained. However, only those experimental data have been compared where there were no enzyme repair processes. The method of calculation has also been extended to study breaks in higher-order structures of DNA molecules such as chromatin. Specific limitations of the present model have been pointed out for making further improvements.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...