Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 34 (1988), S. 946-954 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Particle dispersion in a two-dimensional mixing layer is analyzed numerically by calculating the particle trajectories in a free shear layer simulated by discrete vortices. Important global and local flow quantities reported in experimental measurements are reasonably simulated.The particle dispersion results demonstrate that the extent of particle dispersion depends strongly on the Stokes number St, the ratio of particle aerodynamic response time to the characteristic time of the mixing layer flow. Particles with relatively small St values are dispersed at approximately the fluid dispersion rate. Particles with large St values are dispersed at a rate that is less than the fluid rate. Particles with intermediate values of St may get flung outside of the vortex structures in the mixing layer and therefore get dispersed at a higher rate than the fluid. This result is in agreement with some previous experiments in plane and axisymmetric jets. It is also found that a higher dispersion rate is associated with the particles introduced to the flow from the low-speed side and from near the middle of the mixing layer.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 9 (1989), S. 23-41 
    ISSN: 0271-2091
    Keywords: Momentum transport ; Turbulent mixing layers ; Discrete vortex method ; Time-dependent momentum fluctuations ; Comparison with experiments ; Large-scale structures ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The turbulent momentum transport phenomena in a two-dimensional mixing layer are investigated numerically by a discrete vortex method. The numerical model and calculations are verified through a comparison with existing numerical simulations and experimental measurements. The main emphasis is placed on the exploration of the detailed time-dependent instantaneous local momentum fluctuations and on the comparison of numerical results with available experimental measurements. The current simulations confirm qualitatively the various trends in the turbulent momentum flux and fluctuating components of the velocity in the mixing layer found with several experimental results. The study shows that similarity exists in turbulent momentum quantities along the axial direction of the mixing layer. The calculations also show a definite correlation between the passage of a large-scale structure and a burst in the turbulent momentum flux. The probability density functions of the fluctuating quantities are shown to be mostly Gaussian-like, with only a few exceptions.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...