Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial and engineering chemistry 18 (1979), S. 134-138 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial & engineering chemistry research 26 (1987), S. 921-927 
    ISSN: 1520-5045
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Environmental science & technology 13 (1979), S. 549-553 
    ISSN: 1520-5851
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-4943
    Keywords: p21 35–47 peptide ; raf inhibition ; JNK and jun ; selective inhibition of oncogenic ras–p21
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract We have previously found that a peptide corresponding to residues 35–47 of the ras-p21 protein, from its switch 1 effector domain region, strongly inhibits oocyte maturation induced by oncogenic p21, but not by insulin-activated cellular wild-type p21. Another ras–p21 peptide corresponding to residues 96–110 that blocks ras–jun and jun kinase (JNK) interactions exhibits a similar pattern of inhibition. We have also found that c-raf strongly induces oocyte maturation and that dominant negative c-raf strongly blocks oncogenic p21-induced oocyte maturation. We now find that the p21 35–47, but not the 96–110, peptide completely blocks c-raf-induced maturation. This finding suggests that the 35–47 peptide blocks oncogenic ras at the level of raf; that activated normal and oncogenic ras–p21 have differing requirements for raf-dependent signaling; and that the two oncogenic-ras-selective inhibitory peptides, 35–47 and 96–110, act at two different critical downstream sites, the former at raf, the latter at JNK/jun, both of which are required for oncogenic ras-p21 signaling.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-4943
    Keywords: p21 protein ; oncogenic forms ; conformations ; molecular dynamics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Theras-oncogene-encoded p21 protein becomes oncogenic if amino acid substitutions occur at critical positions in the polypeptide chain. The most commonly found oncogenic forms contain Val in place of Gly 12 or Leu in place of Gln 61. To determine the effects of these substitutions on the three-dimensional structure of the whole p21 protein, we have performed molecular dynamics calculations on each of these three proteins bound to GDP and magnesium ion to compute the average structures of each of the three forms. Comparisons of the computed average structures shows that both oncogenic forms with Val 12 and Leu 61 differ substantially in structure from that of the wild type (containing Gly 12 and Gln 61) in discrete regions: residues 10–16, 32–47, 55–74, 85–89, 100–110, and 119–134. All of these regions occur in exposed loops, and several of them have already been found to be involved in the cellular functioning of the p21 protein. These regions have also previously been identified as the most flexible domains of the wild-type protein and have been bound to be the same ones that differ in conformation between transforming and nontransforming p21 mutant proteins neither of which binds nucleotide. The two oncogenic forms have similar conformations in their carboxyl-terminal domains, but differ in conformation at residues 32–47 and 55–74. The former region is known to be involved in the interaction with at least three downstream effector target proteins. Thus, differences in structure between the two oncogenic proteins may reflect different relative affinities of each oncogenic protein for each of these effector targets. The latter region, 55–74, is known to be a highly mobile segment of the protein. The results strongly suggest that critical oncogenic amino acid substitutions in the p21 protein cause changes in the structures of vital domains of this protein.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-4943
    Keywords: rap-1A ; ras-p21 protein ; homologous sequence ; energy minimization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract rap-1A, an anti-oncogene-encoded protein, is aras-p21-like protein whose sequence is over 80% homologous to p21 and which interacts with the same intracellular target proteins and is activated by the same mechanisms as p21, e.g., by binding GTP in place of GDP. Both interact with effector proteins in the same region, involving residues 32–47. However, activated rap-1A blocks the mitogenic signal transducing effects of p21. Optimal sequence alignment of p21 and rap-1A shows two insertions of rap-1A atras positions 120 and 138. We have constructed the three-dimensional structure of rap-1A bound to GTP by using the energy-minimized three-dimensional structure ofras-p21 as the basis for the modeling using a stepwise procedure in which identical and homologous amino acid residues in rap-1A are assumed to adopt the same conformation as the corresponding residues in p21. Side-chain conformations for homologous and nonhomologous residues are generated in conformations that are as close as possible to those of the corresponding side chains in p21. The entire structure has been subjected to a nested series of energy minimizations. The final predicted structure has an overall backbone deviation of 0.7 å from that ofras-p21. The effector binding domains from residues 32–47 are identical in both proteins (except for different side chains of different residues at position 45). A major difference occurs in the insertion region at residue 120. This region is in the middle of another effector loop of the p21 protein involving residues 115–126. Differences in sequence and structure in this region may contribute to the differences in cellular functions of these two proteins.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-4943
    Keywords: p53 ; mutation ; vinyl chloride ; molecular dynamics ; immunohistochemistry ; angiosarcoma
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The tumor suppressor gene p53 has been identified as the most frequent target of genetic alterations in human cancers. Vinyl chloride, a known human carcinogen that induces the rare sentinel neoplasm angiosarcoma of the liver, has been associated with specific A → T transversions at the first base of codons 249 and 255 of the p53 gene. These mutations result in an Arg→Trp amino acid substitution at residue 249 and an Ile→Phe amino acid substitution at residue 255 in a highly conserved region in the DNA-binding core domain of the p53 protein. To determine the effects of these substitutions on the three-dimensional structure of the p53 protein, we have performed molecular dynamics calculations on this core domain of the wild-type and the Trp-249 and Phe-255 mutants to compute the average structures of each of the three forms. Comparisons of the computed average structures show that both mutants differ substantially from the wild-type structure in certain common, discrete regions. One of these regions (residues 204–217) contains the epitope for the monoclonal antibody PAb240, which is concealed in the wild-type structure but accessible in both mutant structures. In order to confirm this conformational shift, tumor tissue and serum from vinyl chloride-exposed individuals with angiosarcomas of the liver were examined by immunohistochemistry and enzyme-linked immunosorbent assay. Individuals with tumors that contained the p53 mutations were found to have detectable mutant p53 protein in their tumor tissue and serum, whereas individuals with tumors without mutations and normal controls did not.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-4943
    Keywords: ras Oncogene-encoded p21 protein ; C-terminus ; membrane binding ; cell transformation ; helical hairpin conformation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The carboxyl-terminal region of theras oncogene-encoded p21 protein is critical to the protein's function, since membrane binding through the C-terminus is necessary for its cellular activity. X-ray crystal structures for truncated p21 proteins are available, but none of these include the C-terminal region of the protein (from residues 172–189). Using conformational energy analysis, we determined the preferred three-dimensional structures for this C-terminal octadecapeptide of the H-ras oncogene p21 protein and generated these structures onto the crystal structure of the remainder of the protein. The results indicate that, like other membrane-associated proteins, the membrane-binding C-terminus of p21 assumes a helical hairpin conformation. In several low-energy orientations, the C-terminal structure is in close proximity to other critical locales of p21. These include the central transforming region (around Gln 61) and the amino terminal transforming region (around Gly 12), indicating that extracellular signals can be transduced through the C-terminal helical hairpin to the effector regions of the protein. This finding is consistent with the results of recent genetic experiments.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-4943
    Keywords: Oncogenic p21 proteins ; molecular dynamics ; GTP ; changes in conformation ; effector domains
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Molecular dynamics calculations have been performed to determine the average structures ofras-gene-encoded p21 proteins bound to GTP, i.e., the normal (wild-type) protein and two oncogenic forms of this protein, the Val 12- and Leu 61-p21 proteins. We find that the average structures for all of these proteins exhibit low coordinate fluctuations (which are highest for the normal protein), indicating convergence to specific structures. From previous dynamics calculations of the average structures of these proteins bound to GDP, major regional differences were found among these proteins (Monacoet al. (1995),J. Protein Chem., in press). We now find that the average structures of the oncogenic proteins are more similar to one another when the proteins are bound to GTP than when they are bound to GDP (Monacoet al. (1995),J. Protein Chem., in press). However, they still differ in structureat specific amino acid residues rather than in whole regions, in contradistinction to the results found for the p21-GDP complexes. Two exceptions are the regions 25–32, in anα-helical region, and 97–110. The two oncogenic (Val 12- and Leu 61-) proteins have similar structures which differ significantly in the region of residues 97–110. This region has recently been identified as being critical in the interaction of p21 with kinase target proteins. The differences in structure between the oncogenic proteins suggest the existence of more than one oncogenic form of the p21 protein that can activate different signaling pathways.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-4943
    Keywords: Glutathione-S-transferase ; molecular dynamics ; average structure ; effector domains ; jun kinase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract We have recently found that the glutathione-S-transferase π-isozyme (GST-π), a cellular detoxification enzyme, potently and selectively inhibits activation of jun protein by its upstream kinase, jun kinase (JNK). This newly identified regulatory activity of GST-π is strongly inhibited by a group of agents that inhibit its enzymatic activity. Since loss of enzymatic activity in general does not correlate with loss of regulatory activity, it is likely that inhibitor binding induces changes in the structure of one or more domains of GST that block its interaction with JNK. To identify regions of GST that change conformation on the binding of inhibitors, we have performed molecular dynamics calculations on GST-π to compute its average structure in the presence and absence of the inhibitor, glutathione sulfonate. Superposition of the two average structures reveals that several regions change local structure depending upon whether the inhibitor is bound or not bound. Two of these regions, residues 36–50 and 194–201, are highly exposed. We have synthesized peptides corresponding to these two segments and find that the 194–201 sequence strongly inhibits the ability of GST-π to block the in vitro phosphorylation of jun by JNK. These results suggest that this region of GST-π is critical to its functioning as a newly discovered regulator of signal transduction.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...