Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of neurocytology 9 (1980), S. 429-449 
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Thin section and freeze-fracture replicas of the first optic neuropil (lamina ganglionaris) of the flyMusca were studied to determine the types, extent and location of membrane specializations between neurons. Five junctional types are found, exclusive of chemical synapses. These are gap, tight and septate junctions, close appositions between retinular (R) axons and capitate projections (in which an epithelial glial cell invaginates into an R axon). Junctional types and their cellular associations follow: gap junctions, between lamina (L) interneurons, L1–L2; tight junctions, between L1–L2; L3–L4; L4-epithelial glial cell; and R7–R8. Septate junctions, between L1–L2, L3–L4, L3-β, L4-β, α-β, and an unidentified fibre making septate junctions with L1 and L2. Close appositions are found between R axons in the distal portion of the optic cartridges of this neuropil prior to extensive R chemical synapses with L1, L2. These loci (seen in freeze-fracture replicas) have rhomboidal patches of hexagonally arrayed P face particles. Intermembranous clefts between R axons are about 50 Å and are invariably electron lucent. These points of near contact between R terminals are probably the sites of low electrical resistance measured by Shaw (1979). Capitate projections are for the first time revealed in freeze fracture surfaces. Here epithelial glia send many, short, mushroom-shaped processes invaginating into R axons forming a tenacious structural bond. All four membrane leaflets (P and E faces of R axon and glial membrane) in the capitate projection possess particles in higher densities than in the surrounding nonspecialized regions. The known, general functions of each membrane specialization were correlated with the functional capacities of those lamina neurons possessing them in an effort to interpret better the integrative capacity of this neuropil. These data provide some fine structural bases for a putative ‘blood-brain’ barrier between lamina and haemolymph, between lamina and peripheral retina, and possibly between lamina and second optic neuropil.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of neurocytology 9 (1980), S. 451-469 
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Membrane specializations between the three types of glial cells in the first optic neuropil (lamina ganglionaris) of the housefly were determined from thin sections and freeze-fracture replicas. Three strata of glia cells are present in the lamina, A relatively thin layer of satellite glia covers the distal (perikaryal) rind of the lamina and these cells wrap retinular axons that enter the lamina. The central synaptic fields of the lamina neurons are enclosed by epithelial glia, while the proximal surface of the lamina is capped by marginal glial cells. Satellite glia bond to each other via desmosomes, septate and gap junctions. Freeze-fracture replicas show gap junctions as aggregations of E face particles and P face pits on the intramembranous surfaces. Parallel rows of P face particles are indicative of septate junctions. Angulated, intersecting, P face particle ridges are arranged in circumferential bands around retinular axons at the glia-axon interface. Thin section correlates of these junctions are presented. Epithelial glia are characterized by elaborate series of parallel membranes which appear to be suspended in the cytoplasm but may be the invaginated plasma membranes of a neighbouring glial cell. An intermembranous cleft of 40–50 Å is noted and this area has an appreciable electron density which gives the appearance of a gap junction. When cleaved, these membranes show plaques of particles on the P face. The marginal glial cells are relatively large and are joined by a newly discovered junction which is characterized (from freeze-fracture data) by numerous, undulating, uninterrupted, parallel P face ridges which sometimes become circular and form enclosures. In thin sections, electron-dense material fills the membrane appositional areas and in tangential sections faint diffuse parallel striae are seen. This specialized cell contact may be a variant of a continuous junction although, based on fracture replicas, there are obvious similarities to tight junctions. These membrane specializations are related, in the three dimensions of the optic cartridges, to functions in a possible blood-eye barrier system.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 159 (1975), S. 379-385 
    ISSN: 1432-0878
    Keywords: Compound eye ; Musca domestica ; Ommatidium ; Distal retinula ; Scanning electron microscopy ; Corneal lens ; Corneal pigment cell ; Pseudocone ; Semper cell ; Basement membrane
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The distal aspect of the housefly ommatidium was surveyed by the scanning electron microscope. Attention was directed to the somal eminence of the superior central cell and the lens to large pigment cell junction. The underside of each lens facet exhibits six hexagonally arranged incisures. Into each of these indentations are fitted several large pigment cells. This hexagonal indentation appears to be a tenacious anchorage. Two corneal pigment cells laterally encircle the pseudocone and at their proximal extension they enclose the Semper cells and neck of the retinula. The somal eminence of the superior central cell is about 10 μm from the base of the corneal pigment cell enclosure. Micrographs were used to construct a diagram of the ommatidium above the basement membrane. Suggestions are made as to the functional correlates of the observed ommatidial structures.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 170 (1976), S. 77-88 
    ISSN: 1432-0878
    Keywords: Compound eye ; House fly ; Large pigment cells ; Corneal pigment cells ; High voltage and conventional electron microscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The fine structure and cellular associations of the large pigment cells (LPC's) of the compound eye of the house fly were studied with high voltage and conventional electron microscopy. Depending on the sector of the compound eye, the facets are either rectangular or hexagonal. The underside of each facet has indentations exactly aligned with those on top into which inserts an angulated sleeve of LPC's. Under the rectangular lens facet 6 or 8 small compact (in cross section) LPC's join four elongate LPC's. Clusters of compact cells alternate in this ring with elongate ones. Compact cells compress together and become quadrangular (in cross section) several microns below their insertion into the lens and form “building block” corners while elongate cells form “side rails” for the rectangular type of distal pseudocone enclosure. Beneath hexagonal facets all LPC's are rather elongate with out corner cells. In both facet types LPC's enclose the pseudocone for a longitudinal distance of 4 μm and then are displaced as bordering cells by a sleeve of two corneal pigment cells (CPC's), each of which encloses half of the proximal pseudocone. For the following 6 μm of longitudinal distance these concentric sleeves of CPC's and LPC's form a double layer around the pseudocone. At about 10 μm below lens base the two sleeves separate; LPC's become attenuated and extend cable-like to the basement membrane and CPC's enclose the proximal pseudocone, Semper cells and distal retinula. The junction between lens and LPC's has critical structural value in that (1) this is the sole anchorage to the lens by the lengthy remainder of the ommatidium, and (2) LPC's enclose the semiliquid pseudocone in the most distal portion of the pseudocone. In addition to vertical support, the LPC's send out numerous lateral processes that make structural contact among themselves, with the corneal pigment cells and the photoreceptor cells. The structural features of this array are discussed relative to possible physiological roles.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 214 (1981), S. 541-552 
    ISSN: 1432-0878
    Keywords: Lanthanum ; Freeze-fracture ; Housefly ; Photoreceptor cells ; Extracellular space
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The retinular (R) cell junction between adjacent photoreceptor cells in the house-fly ommatidium was characterized by freeze fracture, thin section and tracer (lanthanum) studies. Focal tight junctions occur between cells, and some P face ridge-E face groove correspondences are present in this intramembranal area. When colloidal lanthanum was introduced into the extracellular space (ECS) of the peripheral retina of the housefly, this electrondense tracer moved from the ECS (extra-ommatidial space), through the R-cell junctions and belt desmosomes, into the ommatidial cavity (OC = intrarhabdomal space) of each ommatidium. In the OC, lanthanum outlined a meshwork structure that pervaded this space. The evidence of this tracer movement suggests that there may be ionic continuity between the “traditional” ECS and the fluid bathing the individual rhabdomeres. The volume of the OC is calculated and we suggest that this space is part of the ECS. The functional implications of this postulate are considered in the light of: (1) the different functions of the peripheral and central cells; (2) the dissimilarity of rhabdomal membrane surface facing the OC compared to the “unmodified” plasma membrane of the photoreceptor cell facing the extra-ommatidial cavity; (3) the permeability properties of the R cell junction; and (4) the total ECS containing an ion store capable of sustaining current for the generator potential.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 217 (1981), S. 373-386 
    ISSN: 1432-0878
    Keywords: Perineurium ; Housefly ; First optic neuropile ; Transmission electron microscopy ; Lanthanum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The ultrastructure of the perineurial cells of Musca overlying the first optic neuropile was examined by transmission electron microscopy. These cells are somewhat similar to those of other insects but cytoplasmic flanges seem to be absent, and mitochondria are relatively large and sinuous. The intercellular channel system on the lateral border of the cells is relatively spacious and highly meandering. Perineurial cells are joined by septate, gap, and tight junctions, hemidesmosomes, and desmosomes. Tight and septate junctions bond perineurial cells and glial cells. These data are evaluated on the basis of tracer studies with lanthanum. This material penetrates the extracellular space between perineurium and underlying glial and nerve cells, between epithelial glial cells and retinular axon terminals (capitate projections), and between the α-β fiber pair in the optic cartridge (gnarls). If no damage occurs to the perineurial cells during tissue preparation, this passage of lanthanum to neuronal surfaces indicates that the blood brain barrier is incomplete in this restricted area. Supportive evidence for such permeance is based on electrophysiological data, considerations of membrane specializations in the optic neuropile, and Na+/K+ ratios of dipteran hemolymph.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 198 (1979), S. 501-520 
    ISSN: 1432-0878
    Keywords: Peripheral retina ; Transmission electron microscopy ; House fly ; Membrane specializations and pigment cells ; Photoreceptor cells
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Membrane specializations of the peripheral retina of the housefly (Musca domestica) are revealed in thin sections and freeze fracture/etch replicas. Septate junctions are abundant in corner areas of the pseudocone enclosure bonding: between homologous corneal pigment cells (CPC); between homologous large pigment cells (LPC); between CPC-LPC; between Semper cells (SC); between SC-CPC. Spot desmosomes are present between Semper cells. It is likely that septate junctions function as strengthening adhesions in this area. A new membrane specialization similar to a continuous junction was observed between retinular cells of the same or adjacent ommatidium. This junction has indistinct septa in the 115Å intermembrane cleft and is intermittent in character. When this junction is absent, the apposed cells gape apart. In freeze fracture studies, this junction is characterized by bridges composed of fused membrane particles and randomly arranged particles on the P face, and non-corresponding grooves on the E face. The ridges are elongate and roughly parallel and sometimes they form enclosures. Mitochondria line up along these junctions, often within 90Å of the unit membrane. This membrane specialization has characteristics of tight and continuous junctions. In line with previous findings, we suggest that this junction assists in retinular cell orientation, possibly in enforcing the ommatidial twist and in maintaining localized ionic concentration gradients between retinular cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 166 (1976), S. 353-363 
    ISSN: 1432-0878
    Keywords: Musca domestica ; Interfacetal hair ; Mechanoreceptor, microtubules ; Bipolar neuron ; Scanning and transmission electron microscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The external and internal fine structure of the housefly interfacetal hair and its sensory dendrite was studied with the scanning and transmission (high and low voltage) electron microscopes. The hair shaft contains no dendrites, and is usually situated within a socket on the lens surface. Immediately beneath and directly connected to the base of each hair is a bipolar neuron whose dendrite tip is enveloped in a sheath cell which, in turn, is surrounded by a second sheath cell. Septate junctions are seen between all these cells and contiguous portions of a large pigment cell. At the hair base, the dendrite of the neuron terminates in a tubular body only 1.5 μm in diameter which is filled with about 400 microtubules in highly ordered (in parallel pentagonal and hexagonal) arrays and whose sides are fused to neurofilaments in parallel. Another filament (ca. 70 Å diameter) is in the center of each microtubule-neurofilament polygon. Structures proximal to the tubular body are typical for a scolopoid sensillum, i.e., connecting cilium (9×2+0 microtubules) with rootlet and basal bodies, unmodified dendrite, perikaryon and axon. The axon has not been traced to its synapse. The high degree of internal organization and shortness of the tubular body, as well as its eccentric insertion into the hair shaft lead to the hypothesis that this hair may be a highly sensitive mechanoreceptor. On the basis of their single innervation, these hairs could monitor flight speed from the degree of hair deflection caused by wind in general or particular laminar air currents flowing past the eyes during flight.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 167 (1976), S. 537-545 
    ISSN: 1432-0878
    Keywords: House fly ; Retinular axons ; Interneurons ; Lamina ganglionaris ; High voltage electron microscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Synaptic cartridges of the first optic neuropile (lamina ganglionaris) of the housefly were examined by high voltage electron microscopy (HVEM). Stereo pairs (from thick, i.e., 0.25 μm, sections viewed at 1,000 kV) provided a three dimensional representation of cartridge neurons and clearly revealed the lateral spread, bifurcation and some functional associations of Type I (L1, L2) monopolar interneurons. Slightly proximal to cartridge neck level, pairs of retinular (R) axons made contact with each other and it appeared that R processes projected through the cleft between the Type I interneurons. No junctional modifications were seen between contiguous R axon terminals. The speculation was made that functional contact might exist between neighboring R axons prior to their extensive synapses with principal first order interneurons. Such alleged coupling between R axons would account for several electrophysiological findings from other laboratories. Modifications in EM technique applicable for HVEM were detailed. The value of obtaining thick serial sections and the use of the HVEM in expediting three dimensional reconstructions of neuropile were demonstrated.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 149 (1974), S. 21-41 
    ISSN: 1432-0878
    Keywords: Compound eye ; Musca domestica ; Ommatidia ; Optic cartridge ; Basement membrane
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The compound eye of the housefly, from lens to first optic neuropile (lamina ganglionaris) was examined with a scanning electron microscope. Key findings are as follows: The pseudocone cavity is enclosed by six corneal pigment cells. The nuclei of the six cells are firmly anchored to the underside of the lens and portions remain after lens delamination from the pseudocone cavity. An eccentrically-positioned, short photoreceptor cell was observed near the region where the inferior central cell initiates its rhabdom. This eminence may represent that cell's soma. The basement membrane is revealed as a two-tiered, fibrous layer with ovoid fenestrations. Each opening is sealed with a diaphragm perforated by eight retinular axons and a trachea. Conjoined distal surfaces of the satellite glial cells form a membrane-like barrier immediately underlying the basement membrane. Monopolar somata from the lamina are covered with glial cells which possibly make more intimate contact with the somata through miniscule projections. Optic cartridges with monopolar interneurons were noted. Spherical to slightly biconcave processes of these interneurons contact retinular axons. Very fine (1000 Å) filaments interweave among and contact lateral processes. Further implications are discussed as they relate to observed structures.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...