Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 10 (1990), S. 285-303 
    ISSN: 0271-2091
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: To predict the unsteady convected gust aerodynamic response of a cascade comprised of arbitrary thick and cambered aerofoils in an incompressible, inviscid, flow field, a complete first-order model is formulated. The flow is analysed by considering a periodic flow channel. The velocity potential is separated into steady and unsteady harmonic components, each described by a Laplace equation. The strong dependence of the unsteady aerodynamics on the steady effects of aerofoil and cascade geometry and incidence angle is manifested in the coupling of the unsteady and steady flow fields through the unsteady boundary conditions. Analytical solutions in individual grid elements of a body-fitted computational grid are then determined, with the complete solution obtained by assembly of these local solutions. The validity and capabilities of this model and solution technique are then demonstrated by analysing the steady and unsteady aerodynamics of both theoretical and experimental cascade configurations.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 8 (1988), S. 913-931 
    ISSN: 0271-2091
    Keywords: Unsteady aerodynamics ; Aeroelasticity ; Flutter ; Propulsion ; Flow-induced vibration ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A complete first-order model and locally analytic solution method are developed to analyse the effects of mean flow incidence and aerofoil camber and thickness on the incompressible aerodynamics of an oscillating aerofoil. This method incorporates analytic solutions, with the discrete algebraic equations which represent the differential flow field equations obtained from analytic solutions in individual grid elements. The velocity potential is separated into steady and unsteady harmonic parts, with the unsteady potential further decomposed into circulatory and non-circulatory components. These velocity potentials are individually described by Laplace equations. The steady velocity potential is independent of the unsteady flow field. However, the unsteady flow is coupled to the steady flow field through the boundary conditions on the oscillating aerofoil. A body-fitted computational grid is then utilized. Solutions for both the steady and the coupled unsteady flow fields are obtained by a locally analytic numerical method in which locally analytic solutions in individual grid elements are determined. The complete flow field solution is obtained by assembling these locally analytic solutions. This model and solution method are shown to accurately predict the Theodorsen oscillating flat plate classical solution. Locally analytic solutions for a series of Joukowski aerofoils demonstrate the strong coupling between the aerofoil unsteady and steady flow fields, i.e. the strong dependence of the oscillating aerofoil aerodynamics on the steady flow effects of mean flow incidence angle and aerofoil camber and thickness.
    Additional Material: 18 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 26 (1988), S. 2227-2238 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A complete mathematical model is formulated to analyse the effects of mean flow incidence angle on the unsteady aerodynamics of an oscillating airfoil in an incompressible flow field. A velocity potential formulation is utilized. The steady flow is independent of the unsteady flow field. However, the unsteady flow is coupled to the steady flow field through the boundary conditions on the oscillating airfoil. The numerical solution technique for both the steady and unsteady flow fields is based on a locally analytical method. In this method, analytical solutions are incorporated into the numerical technique, with the discrete algebraic equations which represent the differential flow field equations obtained from analytic solutions in individual local computational grid elements. This flow model and locally analytic numerical solution method are then verified through the excellent correlation obtained with the Theodorsen oscillating flat plate and Sears transverse gust classical solutions. The effects of mean flow incidence on the steady and oscillating airfoil aerodynamics are then investigated.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...