Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 117 (2002), S. 2017-2029 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The reaction dynamics of ground-state atomic oxygen [O(3P)] with allyl radicals (C3H5) has been investigated by applying a combination of crossed beams and laser induced fluorescence techniques. The reactants O(3P) and C3H5 were produced by the photodissociation of NO2 and the supersonic flash pyrolysis of precursor allyl iodide, respectively. A new exothermic channel of O(3P)+C3H5→C3H4+OH was observed and the nascent internal state distributions of the product OH (X 2Π:υ″=0,1) showed substantial bimodal internal excitations of the low- and high-N″ components without Λ-doublet and spin–orbit propensities in the ground and first excited vibrational states. With the aid of the CBS-QB3 level of ab initio theory and Rice–Ramsperger–Kassel–Marcus calculations, it is predicted that on the lowest doublet potential energy surface the major reaction channel of O(3P) with C3H5 is the formation of acrolein (CH2CHCHO)+H, which is consistent with the previous bulk kinetic experiments performed by Gutman et al. [J. Phys. Chem. 94, 3652 (1990)]. The counterpart C3H4 of the probed OH product in the title reaction is calculated to be allene after taking into account the factors of reaction enthalpy, barrier height and the number of intermediates involved along the reaction pathway. On the basis of population analyses and comparison with prior calculations, the statistical picture is not suitable to describe the reactive atom-radical scattering processes, and the dynamics of the title reaction is believed to proceed through two competing dynamical pathways. The major low N″-components with significant vibrational excitation may be described by the direct abstraction process, while the minor but extraordinarily hot rotational distribution of high N″-components implies that some fraction of reactants is sampled to proceed through the indirect short-lived addition-complex forming process. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 116 (2002), S. 2675-2679 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The reaction of ground-state atomic oxygen (O(3P)) with allyl radical (C3H5) was investigated in the crossed beam configuration. O(3P) and C3H5 were generated by the photodissociation of NO2 and the supersonic flash pyrolysis of allyl iodide, respectively. The nascent internal distributions of the OH(X2Π : v″=0,1) reaction product from the newly observed channel of O(3P)+C3H5→C3H4+OH were probed by laser induced fluorescence (LIF) spectroscopy. The distributions showed significant excitations with an unusual bimodal feature: the low and high rotational components without spin-orbit and Λ-doublet propensities in the ground and first excited vibrational states. On the basis of population analysis and comparison with the ab initio and statistical calculations, the experimental distributions are estimated to be totally non-statistical and suggest that the dynamics of the reaction might be described by two competing mechanisms: a major direct abstraction process and an indirect short-lived addition-complex forming process. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 100 (1994), S. 7153-7165 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Infrared spectra of mass-selected clusters NO+(H2O)n for n=1 to 5 were recorded from 2700 to 3800 cm−1 by vibrational predissociation spectroscopy. Vibrational frequencies and intensities were also calculated for n=1 and 2 at the second-order Møller–Plesset (MP2) level, to aid in the interpretation of the spectra, and at the singles and doubles coupled cluster (CCSD) level energies of n=1 isomers were computed at the MP2 geometries. The smaller clusters (n=1 to 3) were complexes of H2O ligands bound to a nitrosonium ion NO+ core. They possessed perturbed H2O stretch bands and dissociated by loss of H2O. The H2O antisymmetric stretch was absent in n=1 and gradually increased in intensity with n. In the n=4 clusters, we found evidence for the beginning of a second solvation shell as well as the onset of an intracluster reaction that formed HONO. These clusters exhibited additional weak, broad bands between 3200 and 3400 cm−1 and two new minor photodissociation channels, loss of HONO and loss of two H2O molecules. The reaction appeared to go to completion within the n=5 clusters. The primary dissociation channel was loss of HONO, and seven vibrational bands were observed. From an analysis of the spectrum, we concluded that the n=5 cluster rearranged to form H3O+(H2O)3(HONO), i.e., an adduct of the reaction products.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 81 (2002), S. 907-909 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: An electrode structure consisting of two phases of Pt and WOx for use in thin-film fuel cells was designed and fabricated using a cosputtering system with a Pt metal and a tungsten oxide target. The coexistence of a polycrystalline Pt nanosized phase and an amorphous tungsten oxide phase in the electrode layer was confirmed by transmission electron microscopic images and x-ray diffraction data. In addition, compared with a Pt thin-film electrode, the two-phase electrode of Pt and WOx showed excellent performance for the devices because of the improved activity of the Pt metallic phase and the spill-over effect of porous tungsten oxides. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 98 (1994), S. 12176-12185 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 97 (1993), S. 5215-5217 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 99 (1993), S. 9307-9309 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Infrared spectra of clusters of protonated nitric acid and water exhibit a marked change with cluster size, indicating that an intracluster reaction occurs with sufficient solvation. In small clusters, H2O binds to a nitronium ion core, but at a critical cluster size the NO+2 reacts. A lower bound of 174 kcal/mol is found for the proton affinity of HNO3.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We have fabricated and characterized double-layer-type electroluminescent devices with the structure of indium-tin-oxide-coated glass/poly[2-(N-carbazolyl)-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene] (CzEH-PPV)/tris(8-hydroxyquinoline) aluminum (Alq3)/Li:Al, in which CzEH-PPV was used as a hole transport medium, and neutral and ionized cluster beam deposition (NCBD and ICBD) methods were applied to deposit Alq3. The surface morphology observed by atomic force microscopy shows that NCBD and especially ICBD methods are more efficient in producing flat and smooth thin film surfaces in comparison to the conventional physical vapor deposition method. Studies of photoluminescence, electroluminescence (EL), and device characteristics demonstrate that the polymeric thin film is susceptible to ion radiation damage and the NCBD-based devices show better device performance, including lower threshold and turn-on voltages, improved EL intensity-voltage, current density-voltage, and external quantum efficiency (EQE)-current characteristics. In addition, the doping effect of the highly fluorescent dye molecule 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran into the Alq3 layer reveals a complete energy transfer, color-tuning capability and enhanced EQEs. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...