Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 10 (1971), S. 4290-4294 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 75 (1989), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: In plants, glycoproteins with asparagine-linked glycans (oligosaccharides) are found in vacuoles, in the extracellular space or matrix, and associated with the endo-membrane system (endoplasmic reticulum, Golgi apparatus, plasma membrane, tonoplast). These glycans are of the high-mannose type, with a structure identical to that found in other organisms (mammals, yeast), or of the complex type with a β1–2 linked xylosyl residue not found in mammalian complex glycans. Asparagine-linked glycans play multiple roles by modifying the physicochemical properties of the polypeptides to which they are attached.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Developing cotyledons of Phaseolus vulgaris L. were labeled for 30 min with [3H] amino acids, homogenized, and the proteins fractionated on sodium dodecylsulfate (SDS) polyacrylamide gels. Fluorographs of these gels showed that the polypeptides of phaseolin, the major reserve protein of P. vulgaris, were synthesized as precursors which could be distinguished from the polypeptides of mature phaseolin by their slightly lower mobility.When extracts of cotyledons labeled for 45 min with [3H] amino acids were fractionated on isopynic sucrose gradients, radioactive phaseolin banded at the same density (1.14 g cm-3) as the endoplasmic reticulum (ER)-marker enzyme NADH-cytochrome c reductase. Fractionation in the presence of 3 mM MgCl2 indicated that the newly-synthesized phaseolin was associated with the rough ER. Pulse-chase experiments showed that phaseolin was transiently associated with the ER, and later accumulated in the protein bodies.Treatment of isolated ER with proteinase K showed that phaseolin polypeptides were degraded only if Triton X-100 was present, indicating that phaseolin was membrane-protected, probably enclosed within the vesicles. ER-associated phaseolin associated to an 18S form at pH 4.5 in the presence of 0.3 M NaCl and 100 mM sodium acetate. The polypeptides of ER-associated phaseolin had a slightly lower mobility on SDS-gels than polypeptides of protein body phaseolin. ER-associated phaseolin had a carbohydrate content of 6.8%, while protein body-derived phaseolin had a carbohydrate content of 6.2%. When cotyledons were labeled simultaneously with [14C] amino acids and [3H] glucosamine or with [14C] amino acids and [3H] mannose, the [3H]/[14C] ratio of ER-derived phaseolin was similar to that of protein body derived phaseolin, indicating that the faster mobility on SDS-gels was not due to the detachment of carbohydrate. Experiments in which the carbohydrate side chains were removed with endoglycosidase H, and the resulting polypeptides subjected to electrophoresis in SDS-gels showed that the differential mobility of the glycopolypeptides of phaseolin resided in their polypeptide chains.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2048
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The culture medium of asynchronously growing Chlamydomonas reinhardii cells contains distinct proteins which are derived from the cell walls of these cells. When cultures are synchronized by a light-dark cycle cell wall proteins are synthesized throughout the cycle, but the release of these proteins into the culture medium occurs primarily in the last quarter of the cycle, after cell separation has occurred. The mutant CW-2, which does not form a normal cell wall, continuously synthesizes and secretes cell wall proteins into the culture medium. The synthesis of cell wall protein during the cell cycle appears to be modulated and peaks of synthesis occur at the end of the light period and in the second half of the dark period, shortly after cell separation. At these times the cells devote 15% of their protein-synthetic capacity to making cell wall proteins.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-2048
    Keywords: Aleurone ; Cell-wall breakdown ; Endosperm ; Gibberellin ; Hordeum ; Xylanase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract When aleurone layers of barley (Hordeum vulgare L.) are incubated with gibberellic acid (GA3) xylose and arabinose—both as free sugars and bound to larger molecules—are released into the medium. Release begins 10–12h after the start of incubation and continues for at least 60h. At the same time there is a GA3-induced breakdown of the cell wall resulting in a loss of 2/3 of the cell-wall pentose during 60h of incubation. GA3 causes the appearance in the medium of an enzyme (or enzymes) which hydrolyze larchwood xylan and aleurone-layer arabinoxylan. Release of the enzyme(s) into the medium begins 28–32h after the start of incubation. Enzyme activity does not accumulate to any large extent in the tissue prior to release into the medium, and is present in very low levels only in the absence of GA3. Xylanase activity is associated with a protein (or proteins) with a molecular weight of 29,000. The hydrolysis of the xylans is largely caused by endoxylanase activity, indicating the importance of endoglycosidases in the GA3-induced breakdown of the aleurone cell wall.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-2048
    Keywords: Cotyledons ; Endoplasmic reticulum ; Ferritin labeling ; Immunocytochemistry ; Phaseolus ; Protein (reserve) ; Reserve protein
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The ultrastructure of the storage parenchyma cells of the cotyledons of developing bean (Phaseolus vulgaris L.) seeds was examined in ultrathin frozen sections of specimens fixed in a mixture of glutaraldehyde, formaldehyde and acrolein, infused with 1 M sucrose, and sectioned at-80° C. Ultrastructural preservation was excellent and the various subcellular organelles could readily be identified in sections which had been stained with uranyl acetate and embedded in Carbowax and methylcellulose. The cells contained large protein bodies, numerous long endoplasmic reticulum cisternae, mitochondria, dictyosomes, and electron-dense vesicles ranging in size from 0.2 to 1.0 μm. Indirect immunolabelling using rabbit immunoglobulin G against purified phaseolin (7S reserve protein), and ferritin-conjugated goat immunoglobulin G against rabbit immunoglobulin G was used to localize phaseolin. With a concentration of 0.1 mg/ml of anti-phaseolin immunoglobin G, heavy labeling with ferritin particles was observed ober the protein bodies, the cisternae of the endoplasmic reticulum, and the vesicles. The same structures were lightly labeled when the concentration of the primary antigen was 0.02 mg/ml. Ferritin particles were also found over the Golgi bodies. The absence of ferritin particles from other organelles such as mitochondria and from areas of cytoplasm devoid of organelles indicated the specificity of the staining, especially at the lower concentration of anti-phaseolin immunoglobulin G.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Planta 158 (1983), S. 140-151 
    ISSN: 1432-2048
    Keywords: Endoplasmic reticulum ; Golgi apparatus ; Lectin ; Phaseolus (transport of protein) ; Phytohemagglutinin ; Protein body ; Storage protein ; Transport (protein)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract When developing cotyledons of Phaseolus vulgaris L. were labeled with [3H]fucose, fucose-labeled phytohemagglutinin (PHA) was found in organelles with average densities of 1.13 g cm-3 and 1.22 g cm-3. The position of these organelles on isopycnic sucrose gradients was independent of the presence of MgCl2 and ethylenediaminetetraacetate in the media, indicating that the fucose-labeled PHA was not associated with the rough endoplasmic reticulum (ER). The organelles with a density of 1.13 g cm-3 were identified as membranes of the Golgi apparatus on the basis of the similarity of their sedimentation properties and those of the Golgi marker enzyme, inosine diphosphatase, in both isopycnic and rate-zonal sucrose gradients. The organelles with a density of 1.22 g cm-3 were identified as small (0.1–0.4 μm), electron-dense vesicles with a protein content similar to that of the protein bodies. Pulsechase experiments with [3H]fucose indicated that fucose-labeled PHA first appeared in the Golgi-apparatus-derived membranes and later in the dense vesicles. Fucose-labeled PHA chased out of the Golgi apparatus first, then out of the dense vesicles, and accumulated in the soluble portion of the homogenate which contained the contents of the broken protein bodies. Fucose-labeled PHA chased out of the two types of organelles with a t 1/2 of 20–30 min, a rate three to four times faster than newly synthesized PHA chases out of the bulk of the ER (Chrispeels, M.J., Bollini, R., 1982, Plant Physiol. 70, 1425–1428). This result indicates that the Golgi apparatus is a much smaller compartment than the ER in the storage parenchyma cells. The sodium ionophore, monensin, which interferes with the function of the Golgi apparatus of animal cells, blocks the biosynthesis and—or transport of fucose- and galactose-labeled macromolecules to the cotyledon cell walls. Monensin also blocks the transport of labeled PHA out of the Golgi apparatus and into the protein bodies. These results provide the first biochemical evidence that a specific storage protein which accumulates in seeds is modified in, and passes through, the Golgi apparatus on its way to the protein bodies.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Planta 111 (1973), S. 353-364 
    ISSN: 1432-2048
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Treatment of isolated barley aleurone layers with gibberellic acid (GA3) resulted in a progressive inhibition of cell-wall synthesis after a 4-h lag period. The incorporation of both [14C]arabinose and [14C]glucose into the cell wall was inhibited by GA3, but analysis of the labelled sugars in the polymerized product showed that the process most affected by the hormone treatment was pentosan biosynthesis. Labelling kinetics and pulse-chase analysis indicated that the pentosans were synthesized in the cytoplasm and subsequently transferred to the cell wall; GA3 did not significantly affect the latter step. The GA3-inhibited labelling of the cell-wall pentosans cannot be explained on the basis of an effect on uptake of radioactive cell-wall precursor, expansion of the free pentose pool, or degradation of newly-formed pentosan. GA3 inhibited the activity of a membrane-bound arabinosyl transferase present in the aleurone layers. This inhibition may explain the inhibition of cell-wall pentosan synthesis by GA3.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-2048
    Keywords: Asparagine linked oligosaccharides ; Cotyledon ; Glycoprotein ; Lectin ; Phaseolus (lectin structure) ; Phytohemagglutinin (structure)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Phytohemagglutinin, the major lectin in the seeds of the common bean Phaseolus vulgaris L., was isolated by affinity chromatography from cotyledons of nearly mature seeds and from developing cotyledons labeled with [3H]glucosamine, [3H]mannose or [3H]fucose. The protein was subjected to exhaustive proteolysis and the carbohydrate composition of the resulting glycopeptides examined. Two classes of oligosaccharide side-chains were found. The sidechains of the first class are of the high-mannose type, containing two residues of N-acetylglucosamine and 8 or 9 mannose residues. The sidechains of the second class are of the modified type containing N-acetylglucosamine, mannose, fucose, xylose in molar ratios of 2:3.8:0.6:0.5. Two-dimensional gel electrophoresis shows that phytohemagglutinin can be fractionated into seven different glycosylated polypeptides, and that each one contains at least one modified oligosaccharide chain. The results indicate that most glycosylated polypeptides probably contain one chain of each class. The carbohydrate composition of the two types of chains is similar to that found in other plant glycoproteins, but this is the first report of a plant glycoprotein with both highmannose and modified oligosaccharides on the same polypeptide chain.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Planta 170 (1987), S. 217-224 
    ISSN: 1432-2048
    Keywords: Canavalia ; Concanavalin A ; Glycoprotein ; Lectin ; Protein processing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Concanavalin A (ConA) is a tetrameric lectin which is synthesized in the developing cotyledons of jack bean (Canavalia ensiformis L.) as a glycosylated precursor, pro-concanavalin A (pro-ConA). The processing of pro-ConA involves the excision of a small glycopeptide from the center of the pro-ConA molecule, and the ligation of the two polypeptides. In this paper, we show that pro-ConA is associated with the endoplasmic reticulum/Golgi fraction of the cells, and that the processing of pro-ConA occurs in the protein bodies. Processing is a complex process and different intermediate-sized polypeptides appear at different times during cotyledon development. The ConA-related polypeptides which accumulate during seed development may be the products of alternate processing events or breakdown products of ConA, rather than precursors of ConA. When glycosylation is prevented by tunicamycin, there is very little transport of pro-ConA out of the endoplasmic reticulum/Golgi system to the protein bodies; the unglycosylated pro-ConA which is transported is slowly processed. Tunicamycin does not prevent the transport of canavalin (a protein which is not glycosylated) or the transport and processing of the small amounts of glycosylated pro-ConA synthesized in the presence of the drug. This is, to our knowledge, the first demonstration that the transport of a glycoprotein in plant cells is dependent on the presence of the glycan.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...