Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Macromolecules 27 (1994), S. 656-659 
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 58 (1995), S. 1371-1384 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Differential scanning calorimetry (DSC) was used to analyze the crystal distribution in homogeneous ethylene-octene copolymers polymerized by the constrained geometry catalyst technology (CGCT). To minimize ambiguities from thermal history effects, copolymers were isothermally annealed at temperatures within the melting range. The cumulative crystallinity was related to the crystal distribution by the Gibbs-Thomson equation. The results provided a clear distinction between Type I copolymers (density less than 0.89 g/cc) and Type II copolymers (densities between 0.89 and 0.91 g/cc). The former had a singlecrystal population that was identified with the bundled crystals seen in transmission electron micrographs. In comparison, the latter had two crystal populations that correlated with lamellar crystals and bundled crystals. © 1995 John Wiley & Sons, Inc.
    Additional Material: 19 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 60 (1996), S. 749-758 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: In the past, relative tie-chain concentration has been semiquantitatively characterized by infrared dichroism on a stretched sample and from brittle fracture strenght. The probability of tie-molecule formation has also been theoretically estimated from chain dimensions and the semicrystalline morphology of the polymers. In this article the probability of tie-chain formation of monodisperse and homogeneous single-site ethylene copolymers has been estimated over a range of densities and molecular weights using the model proposed by Huang and Brown. The relative tie-chain concentration is obtained by multiplying tie-chain probability with the volume fraction crystallinity of polymer. A modified rubber elasticity theory is applied to calculate the concentration of chain links between junction points (crystallites) of the INSITE technology polymers (ITPs) from measured rubber modulus. It is expected that the chain-link concentration should relate to the tie-chain concentration. The calculated rubber modulus, or the chain-links concentration, of the ITPs increases with an increase in density in the 0.865 to 0.910 g/cc range and did not change significantly in the density range of about 0.91 g/cc to 0.954 g/cc. Normalized rubber modulus and relative tie-chain concentration data shows that the relative tie-chain concentration predicated by Huang and Brown model and measured using the modified rubber elasticity theory are quantitatively similar below 0.01 g/cc density. However, above 0.91 g/cc density, the measured rubber modulus is influenced by additional tie-chain formation during deformation due to breakdown of crystallities and, hence, the discrepancy exists between the two methods of estimating relative tie-chain concentration. © 1996 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 51 (1994), S. 887-894 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A family of copolymers of ethylene and α-olefin resins with homogeneous branching distribution, which behaves as elastomers at high short-chain branching levels and acts as typical thermoplastics at low short-chain branching levels, is now available. Control of this broad range of properties stems from the ability to control the molecular architecture more effectively using Dow's INSITETrademark of The Dow Chemical Co. technology than in the past. Due to the unique combination of narrow short-chain branching distribution (SCBD) and narrow molecular weight distribution (MWD), these resins provide a unique opportunity to model structure/property relationships in branched ethylene-α-olefin copolymers. The modulus in branched ethylene-α-olefin copolymers with aliphatic branches is shown to be primarily dictated by crystallinity. It is shown that the branch distribution and the branch type have an insignificant effect on the modulus of ethylene copolymers containing aliphatic branches at a given crystallinity. Modulus data have been successfully modeled in such systems using a lamellar fiber-reinforced amorphous matrix composite model. Switching from aliphatic branches to cyclic branches significantly affected the modulus at similar crystallinities. © 1994 John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...