Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 38 (1993), S. 776-783 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract We have performed a comparative study of xylose utilization in Saccharomyces cerevisiae transformants expressing two key enzymes in xylose metabolism, xylose reductase (XR) and xylitol dehydrogenase (XDH), and in a prototypic xylose-utilizing yeast, Pichia stipitis. In the absence of respiration (see text), baker's yeast cells convert half of the xylose to xylitol and ethanol, whereas P. stipilis cells display rather a homofermentative conversion of xylose to ethanol. Xylitol production by baker's yeast is interpreted as a result of the dual cofactor dependence of the XR and the generation of NADPH by the pentose phosphate pathway. Further limitations of xylose utilization in S. cerevisiae cells are very likely caused by an insufficient capacity of the non-oxidative pentose phosphate pathway, as indicated by accumulation of sedoheptulose-7-phosphate and the absence of fructose-1,6-bisphosphate and pyruvate accumulation. By contrast, uptake at high substrate concentrations probably does not limit xylose conversion in S. cerevisiae XYL1/XYL2 transformants.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 16 (1989), S. 27-33 
    ISSN: 1432-0983
    Keywords: Pichia stipitis ; xyl mutants ; Xylose reductase ; Xylitol dehydrogenase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Mutants of the xylose-utilizing yeast, Pichia stipitis, unable to grow on xylose as the sole carbon source were isolated and characterized. The mutants were deficient in either xylose reductase or xylitol dehydrogenase. By immunological means and upon analysis of revertants, both mutant types could be attributed to the structural genes XYL1 and XYL2, which code for xylose reductase and xylitol dehydrogenase, respectively. These data support previous assumptions that both NADH- and NADPH-dependent xylose reductase activity are due to one protein or gene, respectively. Revertant analysis of xyl1 mutants has revealed the existence of a second xylose reductase gene in P. stipitis. This gene is very likely cryptic. Its corresponding xylose reductase activity is NADPH-dependent.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0983
    Keywords: Transcription ; ADH2 ; Ty1 element ; TYE/STE genes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary By recessive mutations, we have identified five genes, TYE1-TYE5, that are required for Ty-mediated expression of ADH2. These tye mutations not only suppress transcription of ADH2 when associated with a Ty element but are also defective in transcription of all Ty1 and Ty2 elements. Moreover, some of these mutations cause growth defects on non-fermentable carbon sources as well as sporulation defects. tye mutations also strongly suppress ADH2 expression when controlled by a polyA/T insertion mutation. Genetic analysis revealed that genes TYE3 and TYE4 are allelic to the previously identified genes SNF2 and SNF5 which code for transcription factors. These findings suggest that TYE gene products influence transcription of many genes rather than specifically Ty and Ty-mediated transcrption. We have also found that null alleles of certain STE genes (ste7, ste11 and ste12), known to affect cell-type specific gene expression and expression of some Ty-adjacent genes, have a clear effect on Ty-controlled ADH2 expression depending on the carbon source. On the basis of ADH2 transcript levels in glucose-grown cells, all three ste alleles cause of five-fold reduction of ADH2 expression/transcription. In ethanol-grown cells, ste11 and ste12 mutations caused an almost complete loss of Ty-mediated ADH2 activation while ste7 has only a rather moderate effect. Surprisingly, ste11 and ste12 mutations lead to a significant increase in total Ty transcript levels. This would indicate that the STE12 protein, which is known to bind specifically to Ty1 sequences and thereby serve as an activator of a Ty-adjacent gene, can negatively modulate Ty transcription. The STE7 and STE11 genes which encode protein kinases apparently act in a different manner in both Ty and Ty-mediated transcription.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 9 (1985), S. 553-560 
    ISSN: 1432-0983
    Keywords: Yeast ; Ty element ; Recombination ; Gene conversion ; Regulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A haploid yeast mutant carrying a reciprocal translocation was analyzed. Cloning and comparison of sequences involved in the translocation event in wildtype and mutant revealed that the crossover between non-homologous chromosomes has occured within Ty sequences. By DNA sequence analysis it could be demonstrated that the reciprocal recombination event is accompanied by a short segment of non-reciprocal exchange (gene conversion) in the immediate vicinity of the crossover. Analysis of the translocation mutant and revertant isolates also indicated that the regulatory effect of Ty elements on adjacent genes can be modified by discrete changes within a Ty element.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0983
    Keywords: Xylitol dehydrogenase gene ; Pichia stipitis ; Saccharomyces cerevisiae ; Xylose utilization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A P. stipitis cDNA library in λgt11 was screened using antisera against P. stipitis xylose reductase and xylitol dehydrogenase, respectively. The resulting cDNA clones served as probes for screening a P. stipitis genomic library. The genomic XYL2 gene was isolated and the nucleotide sequence of the 1089 bp structural gene, and of adjacent non-coding regions, was determined. The XYL2 open-reading frame codes for a protein of 363 amino acids with a predicted molecular mass of 38.5 kDa. The XYL2 gene is actively expressed in S. cerevisiae transformants. S. cerevisiae cells transformed with a plasmid, pRD1, containing both the xylose reductase gene (XYL1) and the xylitol dehydrogenase gene (XYL2), were able to grow on xylose as a sole carbon source. In contrast to aerobic glucose metabolism, S. cerevisiae XYL1-XYL2 transformants utilize xylose almost entirely oxidatively.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0983
    Keywords: Ty transcription ; TYE2 ; SWI3 ; Transcription factor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The TYE2 gene was identified by recessive mutations which result in a significant reduction of Ty-mediated ADH2 expression. We cloned the TYE2 gene and analyzed its sequence. A large open reading frame of 825 codons was found encoding a rather hydrophilic, 93-kilodalton protein which contains a highly acidic region at its N-terminus. By sequence comparison we found that TYE2 is identical to gene SWI3 which has recently been shown to encode a nuclear protein which may function as a global transcription activation factor. The TYE2/SWI3 protein is necessary for the initiation of Ty1 transcription at its major initiation site in the δ element. Furthermore TYE2 function seems to be important for the expression of a variety of Ty-unrelated functions such as ADH1 expression, sporulation, growth on maltose, galactose, raffinose, and on non-fermentable carbon sources.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 6 (1982), S. 55-61 
    ISSN: 1432-0983
    Keywords: 8 Sequences ; Transposition ; Inversion ; Recombination
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A solo δ sequence flanking the 5′ end of the ADHII structural gene, ADR2, can promote a number of DNA rearrangements some of which were investigated in detail. In a selective system haploid mutants were screened in which a solo S sequence flanking ADR2 had been joined to a Ty element. Three different types of events can create such a structure: Reintegration of a Ty sequence at the δ-ADR2 site, inversion of ADR2 and flanking material, and transposition of ADR2 along with 3′ flanking material. The involvement of reciprocal or non-reciprocal exchange mechanisms in creating such events are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 138 (1975), S. 157-164 
    ISSN: 1617-4623
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Two unlinked loci controlling the glucose-repressible alcohol dehydrogenase (ADH II) inSaccharomyces cerevisiae were investigated. One locus (AD R2) was characterized by electrophoreticallyslow andfast alleles and by inactiveadr2 mutant alleles. The ADH II pattern of heteroallelicslow × fast diploids indicates a tetrameric structure of the enzyme.AD R2 was considered as the structural gene, which codes for the ADH II subunits. Allelicadr2-f mutants could be classified by their response to theslow wild type allele (AD R2-S) in heter ozyg ous diploids. In most cases, only the slow band appeared. In threeadr2-f/AD R2-S crosses hybrid enzymes between inactive fast and active slow enzymes were formed. It was demonstrated, that allelic interactions at the protein level are not restricted to electrophoretical behaviour of hybrid enzymes. They also influence specific activities and substrate affinities. The other locus investigated,AD R1, was characterized by ADH II negative mutants (adr1) and by allelic mutants which generate only very low activity (AD R1-L).ADR1 does not influence the electrophoretic properties of slow and fast ADH II proteins.adr1 mutants have an intact structural gene, which is not expressed. The gene has probably a regulatory function with respect to ADH II synthesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 159 (1978), S. 329-335 
    ISSN: 1617-4623
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Yeast mutants with glucose-insensitive formation of mitochondrial enzymes were isolated starting with a strain completely lacking alcohol dehydrogenase activity. The mutations could uniquely be attributed to a single nuclear gene, designated CCR80. They were largely dominant. Glucose-resistant enzyme formation was most prominent with regard to mitochondrial enzymes succinate dehydrogenase and NADH: cytochrome c oxidoreductase. The effect of CCR80 r mutations was rather small but significant on the gluconeogenetic enzymes isocitrate lyase, malate synthase and fructose-1,6-bisphosphatase and on invertase synthesis. The repressive effect of maltose in CCR80 r mutants was also reduced showing that glucose-resistance is not caused by a mere hexose uptake defect. This regulatory disorders were not accompanied by reduced levels of glycolytic enzymes or drastically altered levels of glycolytic intermediates. Aerobic fermentation of glucose was almost completely inhibited in the mutants; anaerobic glucose degradation was reduced but not completely abolished. Therefore, the mutants appear to be altered in the regulation of glycolysis. A largely glucose-resistant synthesis of respiratory enzymes is obviously a corollary of this alteration.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 154 (1977), S. 213-220 
    ISSN: 1617-4623
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Yeast mutants deficient in the constitutive ADHI (adc1) were used for the isolation of mutants with deficiencies of the intermediary carbon metabolism, and of mutants defective in carbon catabolite derepression. Mutants were recognized by their inability to grow on YEP-glycerol and/or on ethanol synthetic complete medium. They were either defective in isocitrate lyase (icl1), succinate dehydrogenase (sdh1), or malate dehydrogenase (mdh1, mdh2), mdh-mutants could not uniformely be appointed to one of the known MDH isozymes. Homozygous mdh and sdh1 diploids are unable to sporulate. Three gene loci could be identified by mutants pleiotropically defective in many or all of the enzymes tested. In ccr1 mutants, derepression of isocitrate lyase, fructose-1,6-diphosphatase, ADHII and possibly of the cytoplasmic MDH is prevented, whereas the mitochondrial TCA-cycle enzymes, succinate dehydrogenase and malate dehydrogenase, are not significantly affected. CCR2 and CCR3 have quite similar action spectra. Both genes are obviously necessary for derepression of all enzymes tested. It could be shown that ccr1, ccr2 and ccr3 mutants are not respiratory deficient.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...