Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 333 (1988), S. 272-276 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] During the preparation of antibodies against brush-border myosin, we obtained monoclonal antibodies reactive to a new protein present in the epithelial cells. We initially localized this protein in whole cells and isolated brush borders by immuno-fluorescence microscopy (Fig. 1). The brush border ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of muscle research and cell motility 9 (1988), S. 306-319 
    ISSN: 1573-2657
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Monoclonal antibodies binding to epitopes in the rod portion of brush border myosin were used to study the mechanism of filament assembly and its role in myosin interaction with actin. The antibodies and their Fab fragments had specific effects on the size of the filaments assembledin vitro. Two antibodies (BM3 and BM4), directed against the tip of the myosin tail, completely inhibited myosin filament assembly. The other antibodies (BM1, BM2 and BM5), binding to other sites along the myosin rod, only partially blocked filament growth, and short filaments could be assembled. Thiophosphorylated brush border myosin filaments appeared slightly more stable to the effects of the antibodies than those composed of dephosphorylated myosin. Only one (BM3) of the antibodies which completely inhibited the assembly of new filaments was capable of disassembling preformed myosin filaments. The other antibody, BM4, partially disassembled filaments, leaving ∼0.2-μm long ‘cores’, suggesting that polymerization in this myosin occurs by a biphasic Mechanism, I.e. the formation of a stable nucleus of antiparallely packed molecules, followed by elongation. The antibodies BM1 and BM2 bound to myosin filaments generating a regular transverse pattern with a ∼14-nm periodicity, and had little effect on the stability of these preformed filaments. Inhibition of filament formation and solubilization of the myosin by the antibodies appeared to be associated with inhibition of myosin interaction with actin, as measured by the actin-activated MgATPase activity. In the presence of the antibodies which completely inhibit filament assembly, we observed a decrease to ∼20% (BM4-Fab) and to ∼50% (BM3) of the control actin-activated myosin MgATPase activity, and this activity was kinetically different from that of the soluble myosin S1 fragment, suggesting that the rod has a profound effect on the kinetics of actomyosin interaction.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 29 (1994), S. 321-338 
    ISSN: 0886-1544
    Keywords: protrusive activity ; adherens junctions ; stress fibers ; permeabilized cell models ; myosin light chain kinase ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Addition of protein kinase inhibitor H-7 leads to major changes in cell structure and dynamics. In previous studies [Citi, 1992: J. Cell Biol. 117:169-178] it was demonstrated that intercellular junctions in H-7-treated epithelial cells become calcium independent. To elucidate the mechanism responsible for this effect we have examined the morphology, dynamics, and cytoskeletal organization of various cultured cells following H-7-treatment. We show here that drug treated cells display an enhanced protrusive activity. Focal contact-attached stress fibers and the associated myosin, vinculin, and talin deteriorated in such cells while actin, vinculin, and N-cadherin associated with cell-cell junctions were retained. Furthermore, we demonstrate that even before these cytoskeletal changes become apparent, H-7 suppresses cellular contractility. Thus, short pretreatment with H-7 leads to strong inhibition of the ATP-induced contraction of saponin permeabilized cells. Comparison of H-7 effects with those of other kinase inhibitors revealed that H-7-induced changes in cell shape, protrusional activity, and actin cytoskeleton structure are very similar to those induced by selective inhibitor of myosin light chain kinase, KT5926. Specific inhibitors of protein kinase C (Ro31-8220 and GF109203X), on the other hand, did not induce similar alterations. These results suggest that the primary effect of H-7 on cell morphology, motility, and junctional interactions may be attributed to the inhibition of actomyosin contraction. This effect may have multiple effects on cell behavior, including general reduction in cellular contractility, destruction of stress fibers, and an increase in lamellipodial activity. It is proposed that this reduction in tension also leads to the apparent stability of cell-cell junctions in low-calcium medium. © 1994 Wiley-Liss, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    BioEssays 7 (1987), S. 155-159 
    ISSN: 0265-9247
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: In vertebrate and invertebrate nonmuscle myosins, light- and heavy-chain phosphorylation regulate myosin assembly into filaments, and interaction with actin. Vertebrate non-muscle myosins can exist in vitro in three main states, either ‘folded’ (assembly-blocked) or ‘extended’ (assembly-competent) monomers, and filaments. Light-chain phosphorylation regulates the ‘dynamic equilibrium’ between these states. The ability of the myosin to undergo changes in conformation and state of assembly may be an important mechanism in regulating the organization of the cytoskeleton and cell motility.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...