Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Materialart
Erscheinungszeitraum
  • 1
    Digitale Medien
    Digitale Medien
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 73 (1998), S. 2609-2611 
    ISSN: 1077-3118
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: We used the internal photoemission (IPE) technique to accurately determine the valence and conduction band offsets at the a-SiC:H/c-Si interface and investigated with numerical simulations their effects on the photocarrier collection in p+ a-SiC:H/n c-Si heterojunction solar cells. The valence and conduction band discontinuities were found to be 0.60 and 0.55 eV, respectively. However, despite the large barrier at the valence band edge, 30 nm p+ a-SiC:H/n c-Si heterojunction solar cells show no collection problems due to blocking of holes (FF=0.73). Combined IPE measurements and simulation results indicate that tunneling of holes through this barrier at the valence band edge can explain the unhindered collection. © 1998 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 82 (1997), S. 6089-6095 
    ISSN: 1089-7550
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: We have studied by Raman spectroscopy and electro-optical characterization the properties of thin boron doped microcrystalline silicon layers deposited by plasma enhanced chemical vapor deposition (PECVD) on crystalline silicon wafers and on amorphous silicon buffer layers. Thin 20–30 nm p+ μc-Si:H layers with a considerably large crystalline volume fraction (∼22%) and good window properties were deposited on crystalline silicon under moderate PECVD conditions. The performance of heterojunction solar cells incorporating such window layers were critically dependent on the interface quality and the type of buffer layer used. A large improvement of open circuit voltage is observed in these solar cells when a thin 2–3 nm wide band-gap buffer layer of intrinsic a-Si:H deposited at low temperature (∼100 °C) is inserted between the microcrystalline and crystalline silicon [complete solar cell configuration: Al/(n)c-Si/buffer/p+μc-Si:H/ITO/Ag)]. Detailed modeling studies showed that the wide band-gap a-Si:H buffer layer is able to prevent electron backdiffusion into the p+ μc-Si:H layer due to the discontinuity in the conduction band at the amorphous-crystalline silicon interface, thereby reducing the high recombination losses in the microcrystalline layer. At the same time, the discontinuity in the valence band is not limiting the hole exit to the front contact and does not deteriorate the solar cell performance. The defect density inside the crystalline silicon close to the amorphous-crystalline interface has a strong effect on the operation of the cell. An extra atomic hydrogen passivation treatment prior to buffer layer deposition, in order to reduce the number of these defects, did further enhance the values of Voc and fill factor, resulting in an efficiency of 12.2% for a cell without a back surface field and texturization. © 1997 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    ISSN: 1432-0533
    Schlagwort(e): Brain ; Cerebral ischemia ; Gerbil ; Immunohistochemistry ; Hippocampus
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary Anesthetized Mongolian gerbils were subjected to 5-min ischemia and 8 h of recirculation. Vibratiom sections were taken for studying changes in ornithine decarboxylase (ODC) immunoreactivity using an antiserum to ODC, and tissue samples were taken for measuring ODC activity. After 5-min ischemia and 8-h recirculation ODC activity increased 11.5-, 5.9-, and 7.9-fold in the cerebral cortex, striatum and hippocampus, respectively (P≤0.05 to 0.01). In the cortex, striatum and hippocampus of control animals immunoreactivity was low but clearly above the detection limit. The reaction was confined to neurons. After 5-min ischemia and 8-h recirculation a sharp increase in immunoreactivity was observed confined to neurons, indicating that the postischemic activation of polyamine metabolism is a neuronal response to ischemia. The immunoreactivity was markedly increased in the perinuclear cytoplasm and the dendrites. In the striatum the density of neurons exhibiting a sharp increase in immunoreactivity was more pronounced in the lateral than in the ventral part. In the hippocampus a strong reaction was present in all subfields but the CA1 subfield was particularly affected. The present study demonstrates for the first time that biosynthesis of a protein is markedly activated during the first 24 h of recirculation after 5-min cerebral ischemia of gerbils even in the vulnerable CA1 subfield, in which the overall protein synthesis is sharply reduced at the same time. Studying polyamine metabolism after ischemia may, thus, provide new information about the basic molecular mechanisms responsible for the altered gene expression after metabolic stress.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...