Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-904X
    Keywords: midazolam ; epilepsy ; functional adaptation ; pharmacodynamics ; operational model of agonism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Purpose. A mechanism-based model is proposed for the analysis of adaptive changes in the pharmacodynamics of benzodiazepines in vivo. Methods. The pharmacodynamics of midazolam was studied in the kindling model of experimental epilepsy. Concentration-EEC effect data from kindled rats and their controls were fitted to the operational model of agonism. A stepwise procedure was used, allowing changes in the parameters efficacy (τ) and tissue maximum (Em) either separately or in combination. The results were compared to data obtainedin vitro in a brain synaptoneurosomal preparation. Results. The relationship between midazolam concentration and EEC effect was non-linear. In kindled rats the maximum EEC effect was reduced by 27± 8.3µV from the original value of 94± 4.4µV. Analysis on the basis of the operational model of agonism showed that this decrease could be explained by a difference in the parameter system maximum (Em) rather than efficacy (τ). In the in vitro receptor binding assay no changes in density, affinity or functionality of the benzodiazepine receptor were observed, consistent with the lack of a change in efficacy (τ). Conclusions. The operational model of agonism provides a mechanistic basis to characterise adaptive changes in the pharmacodynamics of midazolam.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-8744
    Keywords: pharmacokinetics ; pharmacodynamics ; effect compartment model ; indirect response ; sigmoid E max ; tiagabine ; GABA uptake inhibitor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Pharmacological inhibition of GABA uptake transporters provides a mechanism for increasing GABAergic transmission, which may be useful in the treatment of various neurological disorders. The purpose of our investigations was to develop an integrated pharmacokinetic–pharmacodynamic (PK/PD) model for the characterization of the pharmacological effect of tiagabine, R-N-(4,4-di-(3-methylthien-2-yl)but-3-enyl)nipecotic acid, in individual rats in vivo. The tiagabine-induced increase in the amplitude of the EEG 11.5–30 Hz frequency band (β), was used as pharmacodynamic endpoint. Chronically instrumented male Wistar rats were randomly allocated to four groups which received an infusion of 3, 10, or 30 mg kg −1 $$(\bar x \pm SE,{\text{ }}n = 23)$$ $$96 \pm 9$$ ml min -1 kg−1, 1.5ŷ0.1 L kg−1 and 20ŷ0.2 min.A time delay was observed between the occurrence of maximum plasma drug concentrations and maximal response. A physiological PK/PD model has been used to account for this time delay, in which a biophase was postulated to account for tiagabine available to the GABA uptake carriers in the synaptic cleft and the increase in EEG effect was considered an indirect response due to inhibition of GABA uptake carriers. The population values for the pharmacodynamic parameters characterizing the delay in pharmacological response relative to plasma concentrations were keo=0.030 min −1 and kout=81 min−1, respectively. Because of the large difference in these values the PK/PD model was simplified to the effect compartment model. Population estimates $$(\bar x \pm SE)$$ were E0=155 ŷ 6 μV, Emax=100 ŷ 5 μV, EC50=287 ŷ 7 ng ml−1, Hill factor=1.8 ŷ 0.2 and keo=0.030 ŷ 0.002 min −1. The results of this analysis show that for tiagabine the combined “effect compartment-indirect response” model can be simplified to the classical “effect compartment” model.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-904X
    Keywords: benzodiazepines ; pharmacokinetics ; EEG ; operational model of agonism ; receptor binding ; muscimol-induced Cl−uptake
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Purpose. A mechanism-based model is applied to analyse adaptivechanges in the pharmacodynamics of benzodiazepines upon chronictreatment in rats. Methods. The pharmacodynamics of midazolam was studied in ratswhich received a constant rate infusion of the drug for 14 days, resultingin a steady-state concentration of 102 ± 8 ng·ml−1. Vehicle treated ratswere used as controls. Concentration-EEG effect data were analysed onbasis of the operational model of agonism. The results were comparedto data obtained in vitro in a brain synaptoneurosomal preparation. Results. The relationship between midazolam concentration and EEGeffect was non-linear. In midazolam pre-treated rats the maximum EEGeffect was reduced by 51 ± 23 μV from the original value of 109 ±15 μV in vehicle treated group. Analysis of this change on basis ofthe operational model of agonism showed that it can be explained bya change in the parameter tissue maximum (Em) rather than efficacy(τ). In the in vitro studies no changes in density, affinity or functionalityof the benzodiazepine receptor were observed. Conclusions. It is concluded that the observed changes in theconcentration-EEG effect relationship of midazolam upon chronic treatmentare unrelated to changes in benzodiazepine receptor function.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...