Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 18 (1979), S. 5475-5482 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 23 (1984), S. 368-375 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 15 (1976), S. 3932-3942 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 15 (1976), S. 3943-3950 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0827
    Keywords: Hypertrophic chondrocytes ; 1,25(OH)2D3 ; Collagen ; Alkaline phosphatase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Summary The effects of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) (2.3×10-12-1.4×10-6 [M]) on alkaline phosphatase, collagen, and cell proliferation were examined in primary cultured hypertrophic chondrocytes prepared from the distal epiphyseal growth plate of the tibias of 12-day chick embryos. 1,25(OH)2D3 showed time- and dose-dependent inhibitory effects on the alkaline phosphatase and collagen levels. The inhibition of alkaline phosphatase activity became detectable at 2×10-11 [M] and reached 10% of control at 10-7 [M]. The concentration of 1,25(OH)2D3 giving a 50% inhibition of the enzyme level was approximately 3×10-10 [M]. Of the two extracellular collagen pools, a cell-associated matrix pool showed a more dramatic decrease (to 10% of control) than a culture medium pool (to 50% of control) at increased 1,25(OH)2D3 concentrations. The degree of inhibition was different for each type of chondrocyte-specific collagen (types II, IX, X, and XI). Types II and IX were inhibited in a parallel manner to only 60–80% of control. On the other hand, types X and XI were more greatly reduced up to 10% of control, and their dose-dependent inhibitory curves were similar to that of alkaline phosphatase. On cell proliferation, 1,25(OH)2D3 had a biphasic effect: stimulation at 10-10–10-8 [M] and inhibition at higher levels. The results revealed the significant involvement of 1,25(OH)2D3 in the metabolism of two probable calcification-related products, alkaline phosphatase and type X collagen.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 556 (1989), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Journal of orthopaedic science 1 (1996), S. 369-375 
    ISSN: 1436-2023
    Keywords: chick embryo ; epiphyseal growth plate ; chonrocyte ; collagen ; differentiation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Monolayer cultures of 12-day chick embryo chondrocytes from the regions of dividing (zone 1), elongated (zone 2), and hypertrophied (zone 3) chondrocytes in the tibial cpiphyseal growth plate were analyzed for their capacity to synthesize types II, IX, X, and XI collagens. Synthesis of types II and IX collagens was markedly elevated in the zone 2 culture, while type X collagen synthesis was maximal in zone 3. Type XI collagen was synthesized at low rates in all cultures, with some elevation of its rate in zones 2 and 3. In terms of mol percent of total collagen synthesis, types II and IX collagens decreased from zone 1 to zone 3, while type X collagen increased progressively. Thus, the composition of the extracellular collagens produced by the different zones changed markedly during chondrocyte differentiation. In addition, type X collagen was released exclusively into the culture medium, whereas type XI collagen was retained in the extracellular cell-associated matrix. In contrast, types II and IX collagens were found in both the culture medium and the cell matrix pools. Although types II and IX collagens showed similar changes during differentiation, the synthetic molar ratios of these two collagens varied from 3 to 18 in different cultures, suggesting that the synthesis of these two products is not tightly coupled in these cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 139 (1989), S. 287-294 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The effects of cell surface heparan sulfate proteoglycan (HSPG) prepared from log and confluent monolayers of a rat hepatoma cell line on hepatoma cell growth were studied. When HSPG isolated from confluent cells was added exogenously to log phase cells, it was internalized and free heparan sulfate (HS) chains appeared transiently in the nucleus. Concurrently, the growth of the treated cells was inhibited, but the cells resumed logarithmic growth as the level of nuclear HS fell, and the cells grew to confluence and became contact inhibited. When HSPG prepared from log-phase hepatoma cells was added exogenously to log phase cells, it was internalized but very little of the internalized HS appeared in the nucleus, and there was no change in the rate of cell growth. However, when the rate of cell growth was reduced by culture of the cells in serum- and insulin-deficient medium, HSPG prepared from log-phase cells stimulated the growth rate of these slow-growing cells. The cell cycle dependency of HSPG uptake and growth inhibition was studied in cultures synchronized by a thymidine/aphidicolin double block. When [35SO4]HSPG from confluent cells was added to synchronized cells just as they were released from the second block, a portion of the [35SO4]HSPG was internalized and [35SO4]HS appeared in the nucleus. However, at mitosis the [35SO4]HS disappeared almost completely from all of the cellular pools, and after mitosis, more of the [35SO4]HSPG was taken up and [35SO4]HS reappeared in the nucleus and remained in the nucleus until the cells divided again. When cultures were released from the aphidicolin block, both control and HSPG-treated cells progressed through the S, the G2, and the M phases of the cell cycle. However, the length of the G1 phase of the cycle was increased in the HSPG-treated cells. The treated cultures then progressed through the second S, G2, and M phases. Thus, the inhibition of cell division occurred in the G1, phase of the cell cycle, prior to the G1,/S boundary. Addition of the HSPG to the synchronized cultures just after the first mitosis resulted in an immediate arrest of the cell cycle in G1, These results support the earlier suggestion (M. Ishihara, N.S. Fedarko, and H.E. Conrad 1987 J. Biol. Chem. 262:4708-4716; M. Ishihara and H.E. Conrad (1989) J. Cell Physiol., in press) that the HSPG formed by confluent hepatocytes plays a role in the prevention of cell division, whereas the HSPG formed by exponentially growing cells plays a role in the stimulation of cell division. The inhibition of cell growth results from a block in the G1, phase of the cell cycle prior to the G1,/S boundary.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 138 (1989), S. 467-476 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: A rat hepatoma cell line (Gershenson et al., Science, 170:859-861, 1970) contains a dynamic steady-state pool of free heparan sulfate (HS) chains in the nucleus that increases in amount when growing cells reach confluence (Fedarko and Conrad, j. Cell Dioi, 102:587-599, 1986). In logarithmically growing cells labeled with 35SO42- steady-state levels of [35SO4]HS in the nucleus are altered by a variety of culture conditions. Rapidly dividing cells (doubling time = 18-22 h) growing under optimized conditions had steady-state levels of nuclear HS within the range of 40-50 pmol 35SO4 in nuclear HS/106 cells. The steady-state levels of nuclear HS were lowered by several changes in culture conditions, including 1) additions of 1 mM p-nitrophenyl-β-D-xyloside, 0.25-0.5 mM (+)-catechin, 0.5 ng/ml transforming growth factor β, 20 ng/ml phorbol-12-myristate-13-acetate, 1 mM dibutyryl cAMP, or 1 mM inositol-2-PO4; 2) decreased levels of D-glucose; or 3) deletions of serum, insulin, or inositol. In all cases lowering of the nuclear HS level was accompanied by an increase in the cell doubling times, suggesting a correlation in which nuclear HS levels must be optimized for maximal growth rates. When cells cultured under optimal growth conditions reached confluence, the level of nuclear HS increased threefold and the cells stopped dividing. The same culture conditions that lowered the steady-state levels of HS in the logarithmically growing cells prevented this rise in the nuclear HS as the cells reached confluence and resulted in loss of contact inhibition and overgrowth of the confluent cultures. These observations suggest a second correlation in which elevated nuclear HS levels are found when cell growth is inhibited at confluence; prevention of this rise results in continued growth. Consistent with this correlation between elevated nuclear HS and reduced growth rates, it was observed that addition of either 0.5 μg/ml hydrocortisone or 0.05 μg/ml retinoic acid to the culture medium of logarithmically growing cultures resulted in.increases in steady-state levels of nuclear HS that were accompanied by increased cell doubling times. The two agents that increased the levels of nuclear HS in logarithmically growing cultures had little effect on levels of nuclear HS in confluent cells or on contact inhibition. These results show that cells growing at maximal rates maintain nuclear HS levels within a range of 40-50 pmol SO4 in HS/106 cells and that when the steady-state levels of nuclear HS either rise above or fall below this range, the growth rates in subconfluent cultures are decreased. As log-phase cells reach confluence and stop dividing, there is a rise in the level of nuclear HS. Under growth conditions which prevent this rise, cells lose contact inhibition.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...