Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Insect Biochemistry and Molecular Biology 23 (1993), S. 691-701 
    ISSN: 0965-1748
    Keywords: 20-Hydroxyecdysone ; Chitinase ; Cuticle ; Developmental regulation ; Endo-β-N-acetylglucosaminidase ; Epidermis ; Fenoxycarb ; Gene ; Gut ; Integument ; Juvenile hormone ; Manduca sexta ; Molting ; cDNA
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 65 (1983), S. 41-46 
    ISSN: 1432-2242
    Keywords: Triticum aestivum ; Wheat ; Protein ; Mutation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Poor adaptability or functional quality of much germplasm used for breeding high-protein hard red winter wheats prompted mutagenesis as an alternative means of increasing grain protein content. Four hard red winter wheat genotypes — KS644 (‘Triumph// Concho/Triumph’), ‘Kaw’, ‘Parker’, and ‘Shawnee’ — were treated with 0.40 M ethyl methanesulfonate (EMS). Advanced lines (M8-M10) were selected that had a 3-year mean grain protein advantage of 0.7% to 2.0% over controls. Increased grain protein content was generally associated with decreased grain yield and kernel weight, but some high-protein mutant lines had yields or kernel weights similar to those of original genotypes. Changes in height and lodging induced by EMS were generally favorable, most mutants being shorter and lodging less than controls, but blooming date was generally delayed, a deleterious change. One line also changed from resistant to segregating for wheat soil-borne mosaic virus. Mutant lines might be utilized in cross-breeding programs, particularly if negative pleiotropic effects and linkages are absent.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5060
    Keywords: Triticum aestivum ; wheat ; protein content ; grain yield ; mixing time ; soil-borne mosaic virus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The wheat (Triticum aestivum L.) cultivar Lancota has genetic potential to produce grain with higher protein content than most other cultivars grown in the hard winter wheat region. It has not consistently expressed full potential for grain protein content outside its area of development. Experiments were conducted to determine genetic variability for grain protein content in Lancota and to utilize that variability to select genotypes with high grain protein content. Approximately 1600 lines were screened to 37 high-protein selections that varied in yield, test weight, flour mixing time, blooming date, height, and reaction to wheat soil-borne mosaic virus (WSBM). Nine promising selections (KS80476, KS80478, KS80480, KS80488, KS80490, KS80491, KS80497, KS80499, and KS80500) had grain protein advantage over Lancota of 0.5 to 1.0% and equalled or exceeded Lancota in yield or test weight. Those selections were resistant to WSBM and satisfactory or better in mixing properties than Lancota. The highest protein selection (KS80496) had a mean protein advantage of 1.5% over Lancota but exhibited a short mixing time of 1 7/8 min. The absence of correlation between some years indicated strong environmental influence on protein content. We concluded that adequate genetic variability existed in the high-grain protein cultivar Lancota to select lines that express the high protein potential better than the original cultivar outside its area of development.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5060
    Keywords: Triticum aestivum ; wheat ; kernel color ; protein content ; inheritance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Utilization of high-protein hard red wheat germplasm in breeding high-protein hard white winter wheats for the U.S. Great Plains raised concern regarding possible genetic relationships between kernel color and protein content. Segregating F3 and F4 populations from reciprocal crosses and backcrosses involving high-protein hard red winter wheat cultivar Plainsman V and normal-protein hard white winter wheat line KS75216 were examined. Nonsignificant regression and correlation coefficients in the F3 generations of KS75216/Plainsman V, KS75216//KS75216/Plainsman V and Plainsman V//KS75216/Plainsman V indicated the absence of genetic relationships between kernel color and protein content. Therefore, despite the presence of genes for protein content and kernel color on the same chromosomes (3A, 3B and 3D), kernel color and protein content appeared as independent traits. A small but significant negative relationship between white kernel color and high protein in Plainsman V/KS75216 was attributable to the possible presence of alien genetic material in the parentage of Plainsman V. Chi-square tests indicated that Plainsman V is a mixture of genotypes for kernel color; most genotypes carry two dominant genes for red color and a few carry one or three. Genetic control of grain protein appeared to be complex. Partial dominance for high protein was indicated in the F3 generation but a generally continuous distribution and transgressive segregation also suggested other genes functioned additively. Heritability estimates by parent-offspring (F3-F4) regression were sufficiently high to ensure genetic progress in the selection of high-protein lines in the red x white wheat crosses. We concluded that development of high-protein cultivars is as feasible for white wheats as for red wheats.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...