Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-8744
    Keywords: PK/PD ; ondansetron ; time-to-event ; random effects ; frailty models ; hierarchical models ; emesis ; time-dependent hazard ; repeated-measures ; model diagnostics ; model evaluation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract This paper presents and illustrates methodology for specifying, estimating, and evaluating a predictive model for repeated measures time-to-event responses. The illustrative example specifies a model of the antiemetic effect vs. concentration relationship for the 5-HT 3 antagonist ondansetron in the human ipecac model for emesis. A key part of this model is a time-dependent log hazard function for emesis that is increased by ipecac administration and decreased by ondansetron concentration. The model is fit using an approximate maximum likelihood method. The data consist of the time free of emeses and, for those individuals with emetic episodes, the time(s) of the episode(s). Model evaluation is accomplished using residual plots adapted to time-to-event data and a “posterior predictive check” wherein observed data statistics are compared to those obtained from data simulated from the fitted model. The ondansetron concentration required to obtain a 50% reduction in the hazard of emesis is estimated to be 1.4±0.2 ng/ml, and the rate constant for elimination of ipecac-induced hazard is 1.5±0.2hr −1 .
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-904X
    Keywords: propofol ; pharmacokinetics ; pharmacodynamics ; rats ; EEG ; fat emulsion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Purpose. The influence of different intravenous formulations on the pharmacokinetics and pharmacodynamics of propofol was investigated using the effect on the EEG (11.5-30 Hz) as pharmacodynamic endpoint. Methods. Propofol was administered as an intravenous bolus infusion (30 mg/kg in 5 min) or as a continuous infusion (150 mg/kg in 5 hours) in chronically instrumented male rats. Propofol was formulated as a 1% emulsion in an Intralipid 10%®-like fat emulsion (Diprivan-10®, D) or as a 1%- or 6% emulsion in Lipofundin® MCT/LCT-10% (Pl% and P6%, respectively). EEG was recorded continuously and arterial blood samples were collected serially for the determination of propofol concentrations using HPLC. Results. Following bolus infusion, the pharmacokinetics of the various propofol emulsions could adequately be described by a two-compart-mental pharmacokinetic model. The average values for clearance (Cl), volume of distribution at steady-state (Vd,ss) and terminal half-life (t1/2, λ2) were 107 ± 4 ml/min/kg, 1.38 ± 0.06 l/kg and 16 ± 1 min, respectively (mean ± S.E., n = 22). No significant differences were observed between the three propofol formulations. After continuous infusion these values were 112 ± 11 ml/min/kg, 5.19 ± 0.41 l/kg and 45 ± 3 min, respectively (mean±S.E., n = 20) with again no statistically significant differences between the three propofol formulations. Comparison between the bolus- and the continuous infusion revealed a statistically significant difference for both Vd,ss and t1/2, λ2 (p 〈 0.05), whereas Cl remained unchanged. In all treatment groups infusion of propofol resulted in a burst-suppression type of EEG. A profound hysteresis loop was observed between blood concentrations and EEG effect for all formulations. The hysteresis was minimized by a semi-parametric method and resulted in a biphasic concentration-effect relationship of propofol that was described non-parametrically. For P6% a larger rate constant onset of drug effect (t,1/2, keo) was observed compared to the other propofol formulations (p〈0.05). Conclusions. The pharmacokinetics and pharmacodynamics of propofol are not affected by to a large extent the type of emulsion nor by the concentration of propofol in the intravenous formulation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...