Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    350 Main Street , Malden , MA 02148 , USA , and 9600 Garsington Road , Oxford OX4 2DQ , UK . : Blackwell Publishing, Inc.
    Risk analysis 25 (2005), S. 0 
    ISSN: 1539-6924
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: In this article, we describe a straightforward method for solving the probability of at least one malignant cell by time t, and the associated hazard function, in the general (i.e., nonhomogeneous) two-stage Moolgavkar-Venzon-Knudson (MVK) model of cancer. The method consists of solving four coupled ordinary differential equations derived from the Kolmogorov backward equations for this process. The relationship of this method to previously proposed solutions is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Risk analysis 8 (1988), S. 0 
    ISSN: 1539-6924
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Risk analysis 15 (1995), S. 0 
    ISSN: 1539-6924
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: A benchmark dose (BMD) is the dose of a substance that corresponds to a prescribed increase in the response (called the benchmark response or BMR) of a health effect. A statistical lower bound on the benchmark dose (BMDL) has been proposed as a replacement for the no-observed-adverse-effect-level (NOAEL) in setting acceptable human exposure levels. A method is developed in this paper for calculating BMDs and BMDLs from continuous data in a manner that is consistent with those calculated from quantal data. The method involves defining an abnormal response, either directly by specifying a cutoff x0 that separates continuous responses into normal and abnormal categories, or indirectly by specifying the proportion P0 of abnormal responses expected among unexposed subjects. The method does not involve actually dichotomizing individual continuous responses into quantal responses, and in certain cases can be applied to continuous data in summarized form (e.g., means and standard deviations of continuous responses among subjects in discrete dose groups). In addition to specifying the BMR and either x0 or P0, the method requires specification of the distribution of continuous responses, including specification of the dose-response θ(d) for a measure of central tendency. A method is illustrated for selecting θ(d) to make the probability of an abnormal response any desired dose-response function. This enables the same dose-response model (Weibull, log-logistic, etc.) to be used for the probability of an abnormal response, regardless of whether the underlying data are continuous or quantal. Whenever the continuous responses are normally distributed with standard deviation σ (independent of dose), the method is equivalent to defining the BMD as the dose corresponding to a prescribed change in the mean response relative to σ.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Risk analysis 13 (1993), S. 0 
    ISSN: 1539-6924
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1539-6924
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Data from inhalation studies in which AF/HAN rats were exposed to nine different types of asbestos dusts (in 13 separate experiments) are employed in a statistical analysis to determine if a measure of asbestos exposure (expressed as concentrations of structures with defined sizes, shapes and mineralogy) can be identified that satisfactorily predicts the observed lung tumor or mesothelioma incidence in the experiments. Due to limitations in the characterization of asbestos structures in the original studies, new exposure measures were developed from samples of the original dusts that were re-generated and analyzed by transmission electron microscopy using a direct transfer technique. This analysis provided detailed information on the mineralogy (i.e., chrysotile, amosite, crocidolite or tremolite), type (i.e., fiber, bundle, cluster, or matrix), size (length and width) and complexity (i.e., number of identifiable components of a cluster or matrix) of each individual structure. No univariate measure of exposure was found to provide an adequate description of the lung tumor responses observed among the inhalation studies, although the measure most highly correlated with tumor incidence is the concentration of structures 〉20 μm in length. Multivariate measures of exposure were identified that do adequately describe the lung tumor responses. Structures contributing to lung tumor risk appear to be long (〉5 μm) thin (0.4 μm) fibers and bundles, with a possible contribution by long and very thick (〉5 μm) complex clusters and matrices. Potency appears to increase with increasing length, with structures longer than 40 um being about 500 times more potent than structures between 5 and 40 um in length. Structures 〈5 μm in length do not appear to make any contribution to lung tumor risk. This analysis did not find a difference in the potency of chrysotile and amphibole toward the induction of lung tumors. However, mineralogy appears to be important in the induction of mesothelioma with chrysotile being less potent than amphibole.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1539-6924
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: An analysis of the uncertainty in guidelines for the ingestion of methylmercury (MeHg) due to human pharmacokinetic variability was conducted using a physiologically based pharmacokinetic (PBPK) model that describes MeHg kinetics in the pregnant human and fetus. Two alternative derivations of an ingestion guideline for MeHg were considered: the U.S. Environmental Protection Agency reference dose (RfD) of 0.1 pg/kg/day derived from studies of an Iraqi grain poisoning episode, and the Agency for Toxic Substances and Disease Registry chronic oral minimal risk level (MRL) of 0.5 pglkglday based on studies of a fisheating population in the Seychelles Islands. Calculation of an ingestion guideline for MeHg from either of these epidemiological studies requires calculation of a dose conversion factor (DCF) relating a hair mercury concentration to a chronic MeHg ingestion rate. To evaluate the uncertainty in this DCF across the population of U.S. women of child-bearing age, Monte Carlo analyses were performed in which distributions for each of the parameters in the PBPK model were randomly sampled lo00 times. The 1st and 5th percentiles of the resulting distribution of DCFs were a factor of 1.8 and 1.5 below the median, respectively. This estimate of variability is consistent with, but somewhat less than, previous analyses performed with empirical, one-compartment pharmacokinetic models. The use of a consistent factor in both guidelines of 1.5 for pharmacokinetic variability in the DCF, and keeping all other aspects of the derivations unchanged, would result in an RfD of 0.2 pglkglday and an MRL of 0.3 pglkglday.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    350 Main Street , Malden , MA 02148 , USA , and 9600 Garsington Road , Oxford OX4 2DQ , UK . : Blackwell Publishing, Inc.
    Risk analysis 25 (2005), S. 0 
    ISSN: 1539-6924
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: While quantitative estimates of risk have been a standard practice in cancer risk assessment for many years, no similar practice is evident in noncancer risk assessment. We use two recent examples involving methylmercury and arsenic to illustrate the negative impact of this discrepancy on risk communication and cost-benefit analysis. We argue for a more balanced treatment of cancer and noncancer risks and suggest an approach for reaching this goal.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1539-6924
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: The T25 single-point estimate method of evaluating the carcinogenic potency of a chemical, which is currently used by the European Union (EU) and is denoted the EU approach, is based on the selection of a single dose in a chronic bioassay with an incidence rate that is significantly higher than the background rate. The T25 is determined from that single point by a linear extrapolation or interpolation to the chronic dose (in mg/kg/day), at which a 25% increase in the incidence of the specified tumor type is expected, corrected for the background rate. Another method used to obtain a carcinogenic potency value based on a 25% increase in incidence above the background rate is the estimation of a T25 derived from a benchmark dose (BMD) response model fit to the chronic bioassay data for the specified tumor type. A comparison was made between these two methods using 276 chronic bioassays conducted by the National Toxicology Program. In each of the 2-year bioassays, a tumor type was selected based on statistical and biological significance, and both EU T25 and BMD T25 estimates were determined for that end point. In addition, simulations were done using underlying cumulative probability distributions to examine the effect of dose spacing, the number of animals per dose group, the possibility of a dose threshold, and variation in the background incidence rates on the EU T25 and BMD estimates. The simulations showed that in the majority of cases the EU T25 method underestimated the true T25 dose and overestimated the carcinogenic potency. The BMD estimate is generally less biased and has less variation about the true T25 value than the EU estimate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Risk analysis 8 (1988), S. 0 
    ISSN: 1539-6924
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Twenty-three chemicals were selected for comparison of the carcinogenic potencies estimated from epidemiological data to those estimated from animal carcinogenesis bioassays. The chemicals were all those for which reasonably strong evidence of carcinogenicity could be found in humans or animals and for which suitable data could be obtained for quantifying carcinogenic potencies in both humans and animals. Many alternative methods of analyzing the bioassay data were investigated. Almost all of the methods yielded potency estimates that were highly correlated with potencies estimated from epidemiological data; correlations were highly statistically significant (p 〈 0.001), with the corresponding correlation coefficients ranging as high as 0.9. These findings provide support for the general use of animal data to evaluate carcinogenic potential in humans and also for the use of animal data to quantify human risk.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    350 Main Street , Malden , MA 02148 , USA , and 9600 Garsington Road , Oxford OX4 2DQ , UK . : Blackwell Publishing, Inc.
    Risk analysis 23 (2003), S. 0 
    ISSN: 1539-6924
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: An occupational risk assessment for manganese (Mn) was performed based on benchmark dose analysis of data from two epidemiological studies providing dose-response information regarding the potential neurological effects of exposure to airborne Mn below the current Occupational Safety and Health Administration (OSHA) Permissible Exposure Level (PEL) of 5 mg Mn/m3. Based on a review of the scientific evidence regarding the toxicity of Mn, it was determined that the most appropriate measure of exposure to airborne Mn for the subclinical effects measured in these studies is recent (rather than historical or cumulative) concentration of Mn in respirable (rather than total) particulate. For each of the studies analyzed, the individual exposure and response data from the original study had been made available by the investigators. From these two studies benchmark concentrations calculated for eight endpoints ranged from 0.09 to 0.27 mg Mn/m3. From our evaluation of these results, and considering the fact that the subtle, subclinical effects represented by the neurological endpoints tested in these studies do not represent material impairment, we believe an appropriate occupational exposure guideline for manganese would be in the range of 0.1 to 0.3 mg Mn/m3, based on the respirable particulate fraction only, and expressed as an 8-hour time-weighted average.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...